IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v28y2025i3d10.1007_s10951-025-00838-z.html
   My bibliography  Save this article

Task assignments with rotations and flexible shift starts to improve demand coverage and staff satisfaction in healthcare

Author

Listed:
  • Jan Schoenfelder

    (Lancaster University Leipzig, Strohsack-Passage)

  • Jakob Heins

    (University of Augsburg)

  • Jens O. Brunner

    (University of Augsburg
    Technical University of Denmark Akademivej
    Slagelse Hospital, Next Generation Technology)

Abstract

In recent years, the importance of achieving staffing flexibility to balance supply and demand in unpredictable environments, such as hospitals, has grown. This study focuses on shift design with task rotations for a multi-skilled workforce, specifically in service contexts characterized by pronounced demand variability. We introduce a mathematical programming model designed to identify optimal shift start times with task assignments for both full-time and part-time employees, where workers can rotate between multiple tasks during their shifts. We develop a column generation approach that allows us to solve realistically-sized problem instances. Our analysis, derived from staffing data of a university hospital’s radiation oncology department, reveals the model's robust applicability across varying demand landscapes. We demonstrate that incorporating task rotations in the shift design can improve workload balancing when task demands fluctuate considerably. Remarkably, our column generation technique produces optimal integer solutions for realistic problem instances, outperforming the compact mixed-integer formulation which struggles to achieve feasible results. We find that the success of embedding task rotations in shift design decisions is directly influenced by the demand profile, which in turn affects the necessary qualification mix of the workforce.

Suggested Citation

  • Jan Schoenfelder & Jakob Heins & Jens O. Brunner, 2025. "Task assignments with rotations and flexible shift starts to improve demand coverage and staff satisfaction in healthcare," Journal of Scheduling, Springer, vol. 28(3), pages 329-353, June.
  • Handle: RePEc:spr:jsched:v:28:y:2025:i:3:d:10.1007_s10951-025-00838-z
    DOI: 10.1007/s10951-025-00838-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-025-00838-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-025-00838-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mossa, G. & Boenzi, F. & Digiesi, S. & Mummolo, G. & Romano, V.A., 2016. "Productivity and ergonomic risk in human based production systems: A job-rotation scheduling model," International Journal of Production Economics, Elsevier, vol. 171(P4), pages 471-477.
    2. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    3. Hernández-Leandro, Noberto A. & Boyer, Vincent & Salazar-Aguilar, M. Angélica & Rousseau, Louis-Martin, 2019. "A matheuristic based on Lagrangian relaxation for the multi-activity shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 272(3), pages 859-867.
    4. Jacques Desrosiers & Marco E. Lübbecke, 2005. "A Primer in Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 1-32, Springer.
    5. Annalisa Cristini & Dario Pozzoli, 2010. "Workplace practices and firm performance in manufacturing," International Journal of Manpower, Emerald Group Publishing Limited, vol. 31(7), pages 818-842, October.
    6. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    7. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    8. Annalisa Cristini & Dario Pozzoli, 2010. "Workplace practices and firm performance in manufacturing," International Journal of Manpower, Emerald Group Publishing Limited, vol. 31(7), pages 818-842, October.
    9. Monia Rekik & Jean-François Cordeau & François Soumis, 2004. "Using Benders Decomposition to Implicitly Model Tour Scheduling," Annals of Operations Research, Springer, vol. 128(1), pages 111-133, April.
    10. Turgut Aykin, 1996. "Optimal Shift Scheduling with Multiple Break Windows," Management Science, INFORMS, vol. 42(4), pages 591-602, April.
    11. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    12. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    13. Niloofar Katiraee & Martina Calzavara & Serena Finco & Daria Battini & Olga Battaïa, 2021. "Consideration of workers’ differences in production systems modelling and design: State of the art and directions for future research," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3237-3268, June.
    14. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2020. "A Systematic Literature Review for Personnel Scheduling Problems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1695-1735, November.
    15. Restrepo, María I. & Lozano, Leonardo & Medaglia, Andrés L., 2012. "Constrained network-based column generation for the multi-activity shift scheduling problem," International Journal of Production Economics, Elsevier, vol. 140(1), pages 466-472.
    16. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    17. Marie-Claude Côté & Bernard Gendron & Louis-Martin Rousseau, 2011. "Grammar-Based Integer Programming Models for Multiactivity Shift Scheduling," Management Science, INFORMS, vol. 57(1), pages 151-163, January.
    18. Dahmen, Sana & Rekik, Monia & Soumis, François & Desaulniers, Guy, 2020. "A two-stage solution approach for personalized multi-department multi-day shift scheduling," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1051-1063.
    19. Gary M. Thompson, 1995. "Improved Implicit Optimal Modeling of the Labor Shift Scheduling Problem," Management Science, INFORMS, vol. 41(4), pages 595-607, April.
    20. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    2. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    3. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    4. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    5. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    6. Michael Römer, 2024. "Block-based state-expanded network models for multi-activity shift scheduling," Journal of Scheduling, Springer, vol. 27(4), pages 341-361, August.
    7. Rana Shariat & Kai Huang, 2024. "A large-scale neighborhood search algorithm for multi-activity tour scheduling problems," Journal of Heuristics, Springer, vol. 30(5), pages 225-267, December.
    8. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    9. Kraul, Sebastian & Erhard, Melanie & Brunner, Jens O., 2024. "Optimizing physician schedules with resilient break assignments," Omega, Elsevier, vol. 129(C).
    10. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    11. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
    12. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    13. Alex Bonutti & Sara Ceschia & Fabio De Cesco & Nysret Musliu & Andrea Schaerf, 2017. "Modeling and solving a real-life multi-skill shift design problem," Annals of Operations Research, Springer, vol. 252(2), pages 365-382, May.
    14. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
    15. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    16. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    17. Rachid Hassani & Guy Desaulniers & Issmail Elhallaoui, 2024. "A parallel ruin and recreate heuristic for personnel scheduling in a flexible working environment," Journal of Scheduling, Springer, vol. 27(2), pages 165-182, April.
    18. Hagemann, Felix & Porrmann, Till Frederik & Römer, Michael, 2025. "Multi-activity shift scheduling under uncertainty: The value of shift flexibility," European Journal of Operational Research, Elsevier, vol. 323(3), pages 988-998.
    19. Restrepo, María I. & Gendron, Bernard & Rousseau, Louis-Martin, 2017. "A two-stage stochastic programming approach for multi-activity tour scheduling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 620-635.
    20. María I. Restrepo & Bernard Gendron & Louis-Martin Rousseau, 2016. "Branch-and-Price for Personalized Multiactivity Tour Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 334-350, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:28:y:2025:i:3:d:10.1007_s10951-025-00838-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.