IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i3p725-746.html
   My bibliography  Save this article

Workforce Scheduling with Order-Picking Assignments in Distribution Facilities

Author

Listed:
  • Arpan Rijal

    (Faculty of Economics and Business, University of Groningen, 9747 AE Groningen, Netherlands)

  • Marco Bijvank

    (Haskayne School of Business, University of Calgary, Calgary, Alberta T2N 1N4, Canada)

  • Asvin Goel

    (Kühne Logistics University, 20457 Hamburg, Germany)

  • René de Koster

    (Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands)

Abstract

Scheduling the availability of order pickers is crucial for effective operations in a distribution facility with manual order pickers. When order-picking activities can only be performed in specific time windows, it is essential to jointly solve the order picker shift scheduling problem and the order picker planning problem of assigning and sequencing individual orders to order pickers. This requires decisions regarding the number of order pickers to schedule, shift start and end times, break times, as well as the assignment and timing of order-picking activities. We call this the order picker scheduling problem and present two formulations. A branch-and-price algorithm and a metaheuristic are developed to solve the problem. Numerical experiments illustrate that the metaheuristic finds near-optimal solutions at 80% shorter computation times. A case study at the largest supermarket chain in The Netherlands shows the applicability of the solution approach in a real-life business application. In particular, different shift structures are analyzed, and it is concluded that the retailer can increase the minimum compensated duration for employed workers from six hours to seven or eight hours while reducing the average labor cost with up to 5% savings when a 15-minute flexibility is implemented in the scheduling of break times.

Suggested Citation

  • Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:725-746
    DOI: 10.1287/trsc.2020.1029
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2020.1029
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Matteo Fischetti & Silvano Martello & Paolo Toth, 1989. "The Fixed Job Schedule Problem with Working-Time Constraints," Operations Research, INFORMS, vol. 37(3), pages 395-403, June.
    3. Asvin Goel & Leendert Kok, 2012. "Truck Driver Scheduling in the United States," Transportation Science, INFORMS, vol. 46(3), pages 317-326, August.
    4. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    5. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    6. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    7. Thompson, Gary M. & Pullman, Madeleine E., 2007. "Scheduling workforce relief breaks in advance versus in real-time," European Journal of Operational Research, Elsevier, vol. 181(1), pages 139-155, August.
    8. Turgut Aykin, 1996. "Optimal Shift Scheduling with Multiple Break Windows," Management Science, INFORMS, vol. 42(4), pages 591-602, April.
    9. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    10. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    11. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    12. François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
    13. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    14. Jonathan Bard & David Morton & Yong Wang, 2007. "Workforce planning at USPS mail processing and distribution centers using stochastic optimization," Annals of Operations Research, Springer, vol. 155(1), pages 51-78, November.
    15. Guy Desaulniers & Daniel Villeneuve, 2000. "The Shortest Path Problem with Time Windows and Linear Waiting Costs," Transportation Science, INFORMS, vol. 34(3), pages 312-319, August.
    16. Michael J. Brusco & Larry W. Jacobs, 1998. "Personnel Tour Scheduling When Starting-Time Restrictions Are Present," Management Science, INFORMS, vol. 44(4), pages 534-547, April.
    17. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    18. Peter Bodnar & René de Koster & Kaveh Azadeh, 2017. "Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors," Transportation Science, INFORMS, vol. 51(1), pages 112-131, February.
    19. Leslie C. Edie, 1954. "Traffic Delays at Toll Booths," Operations Research, INFORMS, vol. 2(2), pages 107-138, May.
    20. Gérard, Matthieu & Clautiaux, François & Sadykov, Ruslan, 2016. "Column generation based approaches for a tour scheduling problem with a multi-skill heterogeneous workforce," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1019-1030.
    21. Brian Kallehauge & Jesper Larsen & Oli B.G. Madsen & Marius M. Solomon, 2005. "Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 67-98, Springer.
    22. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    23. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    24. Marie-Claude Côté & Bernard Gendron & Louis-Martin Rousseau, 2011. "Grammar-Based Integer Programming Models for Multiactivity Shift Scheduling," Management Science, INFORMS, vol. 57(1), pages 151-163, January.
    25. Allen Holder, 2005. "Navy Personnel Planning and the Optimal Partition," Operations Research, INFORMS, vol. 53(1), pages 77-89, February.
    26. Gary M. Thompson, 1995. "Improved Implicit Optimal Modeling of the Labor Shift Scheduling Problem," Management Science, INFORMS, vol. 41(4), pages 595-607, April.
    27. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Sequencing of picking orders in mobile rack warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109729, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    28. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    29. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    30. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    31. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    32. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    33. Atul Bhandari & Alan Scheller-Wolf & Mor Harchol-Balter, 2008. "An Exact and Efficient Algorithm for the Constrained Dynamic Operator Staffing Problem for Call Centers," Management Science, INFORMS, vol. 54(2), pages 339-353, February.
    34. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.
    35. Michael J. Brusco & Larry W. Jacobs, 2000. "Optimal Models for Meal-Break and Start-Time Flexibility in Continuous Tour Scheduling," Management Science, INFORMS, vol. 46(12), pages 1630-1641, December.
    36. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    37. Matteo Fischetti & Silvano Martello & Paolo Toth, 1987. "The Fixed Job Schedule Problem with Spread-Time Constraints," Operations Research, INFORMS, vol. 35(6), pages 849-858, December.
    38. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    39. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    40. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    41. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    42. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    43. Emilie Danna & Claude Pape, 2005. "Branch-and-Price Heuristics: A Case Study on the Vehicle Routing Problem with Time Windows," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 99-129, Springer.
    44. Krishnamoorthy, M. & Ernst, A.T. & Baatar, D., 2012. "Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 34-48.
    45. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    46. Christian Tilk & Stefan Irnich, 2017. "Dynamic Programming for the Minimum Tour Duration Problem," Transportation Science, INFORMS, vol. 51(2), pages 549-565, May.
    47. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.
    48. Asvin Goel, 2010. "Truck Driver Scheduling in the European Union," Transportation Science, INFORMS, vol. 44(4), pages 429-441, November.
    49. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Sequencing of picking orders in mobile rack warehouses," European Journal of Operational Research, Elsevier, vol. 259(1), pages 293-307.
    50. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    51. Remy Spliet & Said Dabia & Tom Van Woensel, 2018. "The Time Window Assignment Vehicle Routing Problem with Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 52(2), pages 261-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    2. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    3. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
    6. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    7. Idris Addou & François Soumis, 2007. "Bechtold-Jacobs generalized model for shift scheduling with extraordinary overlap," Annals of Operations Research, Springer, vol. 155(1), pages 177-205, November.
    8. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    9. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    10. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    11. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    12. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    13. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    14. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    15. Restrepo, María I. & Lozano, Leonardo & Medaglia, Andrés L., 2012. "Constrained network-based column generation for the multi-activity shift scheduling problem," International Journal of Production Economics, Elsevier, vol. 140(1), pages 466-472.
    16. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    17. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
    18. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    19. Douglas S. Altner & Anthony C. Rojas & Leslie D. Servi, 2018. "A two-stage stochastic program for multi-shift, multi-analyst, workforce optimization with multiple on-call options," Journal of Scheduling, Springer, vol. 21(5), pages 517-531, October.
    20. Wang, Wenshu & Xie, Kexin & Guo, Siqi & Li, Weixing & Xiao, Fan & Liang, Zhe, 2023. "A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements," European Journal of Operational Research, Elsevier, vol. 310(1), pages 360-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:725-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.