IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v54y2008i2p339-353.html
   My bibliography  Save this article

An Exact and Efficient Algorithm for the Constrained Dynamic Operator Staffing Problem for Call Centers

Author

Listed:
  • Atul Bhandari

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

  • Alan Scheller-Wolf

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Mor Harchol-Balter

    (School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

Call center managers are facing increasing pressure to reduce costs while maintaining acceptable service quality. Consequently, they often face constrained stochastic optimization problems, minimizing cost subject to service-level constraints. Complicating this problem is the fact that customer-arrival rates to call centers are often time varying. Thus, to satisfy their service goals in a cost-effective manner, call centers may employ permanent operators who always provide service, and temporary operators who provide service only when the call center is busy, i.e., when the number of customers in system increases beyond a threshold level. This provides flexibility to dynamically adjust the number of operators providing service in response to the time-varying arrival rate. The constrained dynamic operator staffing (CDOS) problem involves determining the number of permanent and temporary operators, and the threshold value(s) that minimize time-average hiring and opportunity costs subject to service-level constraints. We model the CDOS problem as a constrained Markov decision process (MDP) and seek the optimal nonrandomized policy. The only exact method in the literature to obtain the optimal nonrandomized policy for a constrained MDP is enumeration, which is often computationally prohibitive. We provide a novel exact and efficient solution method, the modified balance equations disjunctive constraints (MBEDC) algorithm, yielding a mixed-integer program formulation; the computation times of this algorithm for sample problems are lower than enumeration by up to a factor of 200, and by a factor of 10 on average. Using our algorithm, we quickly solve diverse instances of the CDOS problem, generating managerial insights into the effects of temporary operators and service-level constraints.

Suggested Citation

  • Atul Bhandari & Alan Scheller-Wolf & Mor Harchol-Balter, 2008. "An Exact and Efficient Algorithm for the Constrained Dynamic Operator Staffing Problem for Call Centers," Management Science, INFORMS, vol. 54(2), pages 339-353, February.
  • Handle: RePEc:inm:ormnsc:v:54:y:2008:i:2:p:339-353
    DOI: 10.1287/mnsc.1070.0819
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1070.0819
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1070.0819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    2. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    3. Adam Shwartz & Armand M. Makowski, 1990. "Comparing Policies in Markov Decision Processes: Mandl's Lemma Revisited," Mathematics of Operations Research, INFORMS, vol. 15(1), pages 155-174, February.
    4. Wong, H. & van Houtum, G.J. & Cattrysse, D. & Oudheusden, D. Van, 2006. "Multi-item spare parts systems with lateral transshipments and waiting time constraints," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1071-1093, June.
    5. Geurt Jongbloed & Ger Koole, 2001. "Managing uncertainty in call centres using Poisson mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 307-318, October.
    6. Bruce Andrews & Henry Parsons, 1993. "Establishing Telephone-Agent Staffing Levels through Economic Optimization," Interfaces, INFORMS, vol. 23(2), pages 14-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Jerome Niyirora & Jamol Pender, 2016. "Optimal staffing in nonstationary service centers with constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 615-630, December.
    4. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    5. Yu, Guodong & Liu, Aijun & Zhang, Jianghua & Sun, Huiping, 2021. "Optimal operations planning of electric autonomous vehicles via asynchronous learning in ride-hailing systems," Omega, Elsevier, vol. 103(C).
    6. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    7. Masoud Kamalahmadi & Qiuping Yu & Yong-Pin Zhou, 2021. "Call to Duty: Just-in-Time Scheduling in a Restaurant Chain," Management Science, INFORMS, vol. 67(11), pages 6751-6781, November.
    8. Malaki, Saha & Izady, Navid & de Menezes, Lilian M., 2023. "A framework for optimal recruitment of temporary and permanent healthcare workers in highly uncertain environments," European Journal of Operational Research, Elsevier, vol. 308(2), pages 768-781.
    9. Guodong Pang & Ward Whitt, 2009. "Service Interruptions in Large-Scale Service Systems," Management Science, INFORMS, vol. 55(9), pages 1499-1512, September.
    10. Saravanan Kesavan & Bradley R. Staats & Wendell Gilland, 2014. "Volume Flexibility in Services: The Costs and Benefits of Flexible Labor Resources," Management Science, INFORMS, vol. 60(8), pages 1884-1906, August.
    11. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    12. Eryn Juan He & Joel Goh, 2022. "Profit or Growth? Dynamic Order Allocation in a Hybrid Workforce," Management Science, INFORMS, vol. 68(8), pages 5891-5906, August.
    13. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    14. Ohad Perry & Ward Whitt, 2009. "Responding to Unexpected Overloads in Large-Scale Service Systems," Management Science, INFORMS, vol. 55(8), pages 1353-1367, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ward Whitt, 2006. "Staffing a Call Center with Uncertain Arrival Rate and Absenteeism," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 88-102, March.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    4. Refik Soyer & M. Murat Tarimcilar, 2008. "Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach," Management Science, INFORMS, vol. 54(2), pages 266-278, February.
    5. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    6. Heemskerk, M. & Mandjes, M. & Mathijsen, B., 2022. "Staffing for many-server systems facing non-standard arrival processes," European Journal of Operational Research, Elsevier, vol. 296(3), pages 900-913.
    7. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    8. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    9. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    10. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    11. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    12. Ward Whitt, 2007. "What you should know about queueing models to set staffing requirements in service systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 476-484, August.
    13. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    14. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    15. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    16. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    17. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    18. Castillo, Ignacio & Joro, Tarja & Li, Yong Yue, 2009. "Workforce scheduling with multiple objectives," European Journal of Operational Research, Elsevier, vol. 196(1), pages 162-170, July.
    19. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    20. van Wijk, A.C.C. & Adan, I.J.B.F. & van Houtum, G.J., 2012. "Approximate evaluation of multi-location inventory models with lateral transshipments and hold back levels," European Journal of Operational Research, Elsevier, vol. 218(3), pages 624-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:54:y:2008:i:2:p:339-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.