IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v66y2017ipap159-169.html
   My bibliography  Save this article

Employee scheduling in service industries with flexible employee availability and demand

Author

Listed:
  • Ağralı, Semra
  • Taşkın, Z. Caner
  • Ünal, A. Tamer

Abstract

We consider an employee scheduling problem arising in service industries with flexible employee availability and flexible demand. In the system to be planned, there is a given set of service requirements and a set of employees at any time. Each employee belongs to one of various skill levels, each service requirement specifies the requested employee skill level and the timing of the service delivery, and each requirement has a weight that indicates the importance of that requirement. Employees have individual flexible contracts with the organization, which are characterized by weekly/monthly contracted work hours, days the employee is available for work and availability of overtime. Furthermore, there are regulations on maximum work hours and minimum rest requirements of employees enforced by the government and the labor union. The problem that we investigate is to generate an assignment of employees to service requirements which (i) ensures that the maximum weighted number of service requirements is met, (ii) satisfies government and labor union regulations, (iii) honors individual employee contracts with minimum deviation from the contracted work hours, and (iv) ensures a fair balance between employee schedules in terms of work assignments on holidays. We model the problem as a mixed-integer programming problem and discuss a reformulation strategy, which allows us to solve practical problems in a reasonable amount of time. We also report our experience in a large health-care organization in Belgium.

Suggested Citation

  • Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
  • Handle: RePEc:eee:jomega:v:66:y:2017:i:pa:p:159-169
    DOI: 10.1016/j.omega.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316000475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens O. Brunner, 2010. "Flexible Shift Planning in the Service Industry," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-10517-3, October.
    2. Turgut Aykin, 1996. "Optimal Shift Scheduling with Multiple Break Windows," Management Science, INFORMS, vol. 42(4), pages 591-602, April.
    3. Andrew J. Schaefer & Ellis L. Johnson & Anton J. Kleywegt & George L. Nemhauser, 2005. "Airline Crew Scheduling Under Uncertainty," Transportation Science, INFORMS, vol. 39(3), pages 340-348, August.
    4. Parisio, Alessandra & Neil Jones, Colin, 2015. "A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand," Omega, Elsevier, vol. 53(C), pages 97-103.
    5. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    6. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    7. Balaji Gopalakrishnan & Ellis. Johnson, 2005. "Airline Crew Scheduling: State-of-the-Art," Annals of Operations Research, Springer, vol. 140(1), pages 305-337, November.
    8. Jens O. Brunner, 2010. "Literature Review on Personnel Scheduling," Lecture Notes in Economics and Mathematical Systems, in: Flexible Shift Planning in the Service Industry, chapter 0, pages 5-12, Springer.
    9. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    10. Billionnet, Alain, 1999. "Integer programming to schedule a hierarchical workforce with variable demands," European Journal of Operational Research, Elsevier, vol. 114(1), pages 105-114, April.
    11. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    12. Oded Berman & Richard C. Larson & Edieal Pinker, 1997. "Scheduling Workforce and Workflow in a High Volume Factory," Management Science, INFORMS, vol. 43(2), pages 158-172, February.
    13. Sandjai Bhulai & Ger Koole & Auke Pot, 2008. "Simple Methods for Shift Scheduling in Multiskill Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 411-420, December.
    14. D. Parr & J. Thompson, 2007. "Solving the multi-objective nurse scheduling problem with a weighted cost function," Annals of Operations Research, Springer, vol. 155(1), pages 279-288, November.
    15. Ulusam Seckiner, Serap & Gokcen, Hadi & Kurt, Mustafa, 2007. "An integer programming model for hierarchical workforce scheduling problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 694-699, December.
    16. Leslie C. Edie, 1954. "Traffic Delays at Toll Booths," Operations Research, INFORMS, vol. 2(2), pages 107-138, May.
    17. Castillo, Ignacio & Joro, Tarja & Li, Yong Yue, 2009. "Workforce scheduling with multiple objectives," European Journal of Operational Research, Elsevier, vol. 196(1), pages 162-170, July.
    18. Melanie De Grano & D. Medeiros & David Eitel, 2009. "Accommodating individual preferences in nurse scheduling via auctions and optimization," Health Care Management Science, Springer, vol. 12(3), pages 228-242, September.
    19. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    20. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    21. Marie-Claude Côté & Bernard Gendron & Louis-Martin Rousseau, 2011. "Grammar-Based Integer Programming Models for Multiactivity Shift Scheduling," Management Science, INFORMS, vol. 57(1), pages 151-163, January.
    22. Topaloglu, Seyda, 2009. "A shift scheduling model for employees with different seniority levels and an application in healthcare," European Journal of Operational Research, Elsevier, vol. 198(3), pages 943-957, November.
    23. Narasimhan, Rangarajan, 1997. "An algorithm for single shift scheduling of hierarchical workforce," European Journal of Operational Research, Elsevier, vol. 96(1), pages 113-121, January.
    24. Giovanni Felici & Claudio Gentile, 2004. "A Polyhedral Approach for the Staff Rostering Problem," Management Science, INFORMS, vol. 50(3), pages 381-393, March.
    25. Hanif D. Sherali & J. Cole Smith, 2001. "Improving Discrete Model Representations via Symmetry Considerations," Management Science, INFORMS, vol. 47(10), pages 1396-1407, October.
    26. Gary M. Thompson, 1995. "Improved Implicit Optimal Modeling of the Labor Shift Scheduling Problem," Management Science, INFORMS, vol. 41(4), pages 595-607, April.
    27. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    28. Bard, Jonathan F. & Purnomo, Hadi W., 2005. "Preference scheduling for nurses using column generation," European Journal of Operational Research, Elsevier, vol. 164(2), pages 510-534, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    4. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    5. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    6. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    7. Jens Brunner & Günther Edenharter, 2011. "Long term staff scheduling of physicians with different experience levels in hospitals using column generation," Health Care Management Science, Springer, vol. 14(2), pages 189-202, June.
    8. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    9. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    10. Örmeci, E. Lerzan & Salman, F. Sibel & Yücel, Eda, 2014. "Staff rostering in call centers providing employee transportation," Omega, Elsevier, vol. 43(C), pages 41-53.
    11. Douglas S. Altner & Anthony C. Rojas & Leslie D. Servi, 2018. "A two-stage stochastic program for multi-shift, multi-analyst, workforce optimization with multiple on-call options," Journal of Scheduling, Springer, vol. 21(5), pages 517-531, October.
    12. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    13. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    14. Alex Bonutti & Sara Ceschia & Fabio De Cesco & Nysret Musliu & Andrea Schaerf, 2017. "Modeling and solving a real-life multi-skill shift design problem," Annals of Operations Research, Springer, vol. 252(2), pages 365-382, May.
    15. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    16. Hannah K. Smalley & Pınar Keskinocak & Atul Vats, 2015. "Physician Scheduling for Continuity: An Application in Pediatric Intensive Care," Interfaces, INFORMS, vol. 45(2), pages 133-148, April.
    17. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    18. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    19. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    20. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:66:y:2017:i:pa:p:159-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.