IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v34y2000i3p312-319.html
   My bibliography  Save this article

The Shortest Path Problem with Time Windows and Linear Waiting Costs

Author

Listed:
  • Guy Desaulniers

    (Groupe d'Études et de Recherche en Analyse des Décisions and École Polytechnique, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 2A7, Canada)

  • Daniel Villeneuve

    (Groupe d'Études et de Recherche en Analyse des Décisions and École Polytechnique, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 2A7, Canada)

Abstract

This paper considers the shortest path problem with waiting costs (SPWC) as an extension to the shortest path problem with time windows. The problem consists of finding the minimum cost path in a network, where cost and time are two independent quantities associated with a path. Path feasibility is constrained by time windows at each node and a linear cost penalty is imposed for each unit of time spent waiting along the path. Starting from a known, nonlinear, integer programming formulation, we propose two alternative formulations for which algorithms already exist. First, we indicate how to transform the SPWC into a shortest path problem with time windows and linear node costs. Second, we prove that the SPWC can also be formulated as a two-resource generalized shortest path problem with resource constraints. Computational results used to compare these alternative formulations are presented.

Suggested Citation

  • Guy Desaulniers & Daniel Villeneuve, 2000. "The Shortest Path Problem with Time Windows and Linear Waiting Costs," Transportation Science, INFORMS, vol. 34(3), pages 312-319, August.
  • Handle: RePEc:inm:ortrsc:v:34:y:2000:i:3:p:312-319
    DOI: 10.1287/trsc.34.3.312.12298
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.34.3.312.12298
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.34.3.312.12298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    2. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    3. Desaulniers, Guy & Lavigne, June & Soumis, Francois, 1998. "Multi-depot vehicle scheduling problems with time windows and waiting costs," European Journal of Operational Research, Elsevier, vol. 111(3), pages 479-494, December.
    4. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagih, Anass & Soumis, Francois, 2006. "Nodal aggregation of resource constraints in a shortest path problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 500-514, July.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    4. G Ioannou & M N Kritikos, 2004. "A synthesis of assignment and heuristic solutions for vehicle routing with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 2-11, January.
    5. Y-L Chen & L-J Hsiao & K Tang, 2003. "Time analysis for planning a path in a time-window network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 860-870, August.
    6. Albiach, José & Sanchis, José Marí­a & Soler, David, 2008. "An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 789-802, September.
    7. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    8. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Ceselli & Giovanni Righini & Matteo Salani, 2009. "A Column Generation Algorithm for a Rich Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 43(1), pages 56-69, February.
    2. Ponboon, Sattrawut & Qureshi, Ali Gul & Taniguchi, Eiichi, 2016. "Branch-and-price algorithm for the location-routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 1-19.
    3. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    4. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    5. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    6. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    7. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    8. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    9. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2015. "A column generation approach for a multi-attribute vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 888-906.
    10. Range, Troels Martin, 2013. "Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints," Discussion Papers on Economics 17/2013, University of Southern Denmark, Department of Economics.
    11. Ziarati, Koorush & Soumis, Francois & Desrosiers, Jacques & Gelinas, Sylvie & Saintonge, Andre, 1997. "Locomotive assignment with heterogeneous consists at CN North America," European Journal of Operational Research, Elsevier, vol. 97(2), pages 281-292, March.
    12. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    13. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    14. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    15. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    16. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    17. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    18. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    19. Iman Dayarian & Guy Desaulniers, 2019. "A Branch-Price-and-Cut Algorithm for a Production-Routing Problem with Short-Life-Span Products," Transportation Science, INFORMS, vol. 53(3), pages 829-849, May.
    20. Le-Anh, T. & de Koster, M.B.M., 2004. "Real-Time Scheduling Approaches for Vehicle-Based Internal Transport Systems," ERIM Report Series Research in Management ERS-2004-056-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:34:y:2000:i:3:p:312-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.