IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i2d10.1007_s10959-025-01407-y.html
   My bibliography  Save this article

Joint Extremes of Inversions and Descents of Random Permutations

Author

Listed:
  • Philip Dörr

    (Ruhr University Bochum)

  • Johannes Heiny

    (Stockholm University)

Abstract

We provide asymptotic theory for the joint distribution of $$X_\textrm{inv}$$ X inv and $$X_\textrm{des}$$ X des , the numbers of inversions and descents of random permutations. Recently, [14] proved that $$X_\textrm{inv}$$ X inv , respectively, $$X_\textrm{des}$$ X des , is in the maximum domain of attraction of the Gumbel distribution. To tackle the dependency between these two permutation statistics, we use Hájek projections and a suitable quantitative Gaussian approximation. We show that $$(X_\textrm{inv}, X_\textrm{des})$$ ( X inv , X des ) is in the maximum domain of attraction of the two-dimensional Gumbel distribution with independent margins. This result can be stated in the broader combinatorial framework of finite Coxeter groups, on which our method also yields the central limit theorem for $$(X_\textrm{inv}, X_\textrm{des})$$ ( X inv , X des ) and various other permutation statistics as a novel contribution. In particular, signed permutation groups with random biased signs and products of classical Weyl groups are investigated.

Suggested Citation

  • Philip Dörr & Johannes Heiny, 2025. "Joint Extremes of Inversions and Descents of Random Permutations," Journal of Theoretical Probability, Springer, vol. 38(2), pages 1-37, June.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01407-y
    DOI: 10.1007/s10959-025-01407-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-025-01407-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-025-01407-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arslan, İlker & Işlak, Ümit & Pehlivan, Cihan, 2018. "On unfair permutations," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 31-40.
    2. Mark Conger & D. Viswanath, 2007. "Normal Approximations for Descents and Inversions of Permutations of Multisets," Journal of Theoretical Probability, Springer, vol. 20(2), pages 309-325, June.
    3. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    4. Sourav Chatterjee & Persi Diaconis, 2017. "A central limit theorem for a new statistic on permutations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 561-573, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    2. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    3. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
    4. Matias D. Cattaneo & Richard K. Crump & Weining Wang, 2022. "Beta-Sorted Portfolios," Papers 2208.10974, arXiv.org, revised Nov 2024.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    6. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    7. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    8. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    9. Dongwoo Kim & Daniel Wilhelm, 2024. "Powerful t-tests in the presence of nonclassical measurement error," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 345-378, July.
    10. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    11. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-53, February.
    12. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    13. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    14. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    15. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    16. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "hdm: High-Dimensional Metrics," CeMMAP working papers 37/16, Institute for Fiscal Studies.
    17. Dukes, Mark, 2023. "An Ising model having permutation spin motivated by a permutation complexity measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    18. Chetverikov, Denis & Wilhelm, Daniel & Kim, Dongwoo, 2021. "An Adaptive Test Of Stochastic Monotonicity," Econometric Theory, Cambridge University Press, vol. 37(3), pages 495-536, June.
    19. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Comparison and anti-concentration bounds for maxima of Gaussian random vectors," CeMMAP working papers 71/13, Institute for Fiscal Studies.
    20. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01407-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.