IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i2d10.1007_s10957-019-01575-y.html
   My bibliography  Save this article

Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization

Author

Listed:
  • Goran Banjac

    (ETH Zurich)

  • Paul Goulart

    (University of Oxford)

  • Bartolomeo Stellato

    (Massachusetts Institute of Technology)

  • Stephen Boyd

    (Stanford University)

Abstract

The alternating direction method of multipliers is a powerful operator splitting technique for solving structured optimization problems. For convex optimization problems, it is well known that the algorithm generates iterates that converge to a solution, provided that it exists. If a solution does not exist, then the iterates diverge. Nevertheless, we show that they yield conclusive information regarding problem infeasibility for optimization problems with linear or quadratic objective functions and conic constraints, which includes quadratic, second-order cone, and semidefinite programs. In particular, we show that in the limit the iterates either satisfy a set of first-order optimality conditions or produce a certificate of either primal or dual infeasibility. Based on these results, we propose termination criteria for detecting primal and dual infeasibility.

Suggested Citation

  • Goran Banjac & Paul Goulart & Bartolomeo Stellato & Stephen Boyd, 2019. "Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 490-519, November.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01575-y
    DOI: 10.1007/s10957-019-01575-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01575-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01575-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    2. Didier Henrion & Jérôme Malick, 2012. "Projection Methods in Conic Optimization," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 565-600, Springer.
    3. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    2. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    3. Michael Garstka & Mark Cannon & Paul Goulart, 2021. "COSMO: A Conic Operator Splitting Method for Convex Conic Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 779-810, September.
    4. Rui-Jin Zhang & Xin-Wei Liu & Yu-Hong Dai, 2023. "IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming," Journal of Global Optimization, Springer, vol. 87(2), pages 1027-1053, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    3. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    4. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    5. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    6. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    7. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    8. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    9. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    11. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    12. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    13. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    14. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    15. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    16. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    17. Christian Grussler & Pontus Giselsson, 2022. "Efficient Proximal Mapping Computation for Low-Rank Inducing Norms," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 168-194, January.
    18. Jianming Pan & Zeqi Ye & Xiao Yang & Xu Yang & Weiqing Liu & Lewen Wang & Jiang Bian, 2024. "BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning," Papers 2411.19285, arXiv.org, revised Dec 2024.
    19. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    20. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01575-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.