IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i2d10.1007_s10898-023-01314-8.html
   My bibliography  Save this article

IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming

Author

Listed:
  • Rui-Jin Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin-Wei Liu

    (Hebei University of Technology)

  • Yu-Hong Dai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

We propose IPRQP, an enhanced primal-dual interior-point relaxation method (IPRM), for solving convex quadratic programming. This method is based on a smoothing barrier augmented Lagrangian function for convex quadratic programming. IPRQP inherits the advantages of IPRM, including not requiring iterative points to be interior points, which makes IPRQP suitable for the warm-starting of combinatorial optimization problems. Compared to IPRM, the customized starting points allow the line search of IPRQP to contain only vector operations. In addition, IPRQP improves the updating scheme of the barrier parameter and provides a certificate of infeasibility. Some results on global convergence are presented. We implement the algorithm on convex quadratic programming problems from Maros-Mészaros and the benchmark problem sets NETLIB and Kennington, which contain feasible and infeasible linear programming problems. The numerical results show that our algorithm is reliable for feasible problems and efficient for detecting the infeasibility of infeasible problems.

Suggested Citation

  • Rui-Jin Zhang & Xin-Wei Liu & Yu-Hong Dai, 2023. "IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming," Journal of Global Optimization, Springer, vol. 87(2), pages 1027-1053, November.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-023-01314-8
    DOI: 10.1007/s10898-023-01314-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01314-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01314-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goran Banjac & Paul Goulart & Bartolomeo Stellato & Stephen Boyd, 2019. "Infeasibility Detection in the Alternating Direction Method of Multipliers for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 490-519, November.
    2. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    3. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    2. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    3. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    4. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    5. Sebastiaan Breedveld & Bas Berg & Ben Heijmen, 2017. "An interior-point implementation developed and tuned for radiation therapy treatment planning," Computational Optimization and Applications, Springer, vol. 68(2), pages 209-242, November.
    6. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    7. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    8. Michael Garstka & Mark Cannon & Paul Goulart, 2021. "COSMO: A Conic Operator Splitting Method for Convex Conic Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 779-810, September.
    9. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    10. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    11. Cipolla, S. & Gondzio, J. & Zanetti, F., 2024. "A regularized interior point method for sparse optimal transport on graphs," European Journal of Operational Research, Elsevier, vol. 319(2), pages 413-426.
    12. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    13. Ploskas, Nikolaos & Samaras, Nikolaos, 2015. "Efficient GPU-based implementations of simplex type algorithms," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 552-570.
    14. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    15. Bethany L. Nicholson & Wei Wan & Shivakumar Kameswaran & Lorenz T. Biegler, 2018. "Parallel cyclic reduction strategies for linear systems that arise in dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 70(2), pages 321-350, June.
    16. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    17. Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
    18. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    19. Spyridon Pougkakiotis & Jacek Gondzio, 2022. "An Interior Point-Proximal Method of Multipliers for Linear Positive Semi-Definite Programming," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 97-129, January.
    20. Jacek Gondzio & Spyridon Pougkakiotis & John W. Pearson, 2022. "General-purpose preconditioning for regularized interior point methods," Computational Optimization and Applications, Springer, vol. 83(3), pages 727-757, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-023-01314-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.