IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01512-w.html
   My bibliography  Save this article

A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives

Author

Listed:
  • Kendrik Yan Hong Lim

    (Nanyang Technological University
    Nanyang Technological University)

  • Pai Zheng

    (Nanyang Technological University
    Nanyang Technological University
    The Hong Kong Polytechnic University)

  • Chun-Hsien Chen

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

With the rapid advancement of cyber-physical systems, Digital Twin (DT) is gaining ever-increasing attention owing to its great capabilities to realize Industry 4.0. Enterprises from different fields are taking advantage of its ability to simulate real-time working conditions and perform intelligent decision-making, where a cost-effective solution can be readily delivered to meet individual stakeholder demands. As a hot topic, many approaches have been designed and implemented to date. However, most approaches today lack a comprehensive review to examine DT benefits by considering both engineering product lifecycle management and business innovation as a whole. To fill this gap, this work conducts a state-of-the art survey of DT by selecting 123 representative items together with 22 supplementary works to address those two perspectives, while considering technical aspects as a fundamental. The systematic review further identifies eight future perspectives for DT, including modular DT, modeling consistency and accuracy, incorporation of Big Data analytics in DT models, DT simulation improvements, VR integration into DT, expansion of DT domains, efficient mapping of cyber-physical data and cloud/edge computing integration. This work sets out to be a guide to the status of DT development and application in today’s academic and industrial environment.

Suggested Citation

  • Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01512-w
    DOI: 10.1007/s10845-019-01512-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01512-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01512-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aitor Ardanza & Aitor Moreno & Álvaro Segura & Mikel de la Cruz & Daniel Aguinaga, 2019. "Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 4045-4059, June.
    2. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    3. Kai Ding & Felix T.S. Chan & Xudong Zhang & Guanghui Zhou & Fuqiang Zhang, 2019. "Defining a Digital Twin-based Cyber-Physical Production System for autonomous manufacturing in smart shop floors," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6315-6334, October.
    4. Xi Vincent Wang & Lihui Wang, 2019. "Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3892-3902, June.
    5. Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
    6. Zongmin Ma & Haitao Cheng & Li Yan, 2019. "Automatic Construction of OWL Ontologies From Petri Nets," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 15(1), pages 21-51, January.
    7. Tangbin Xia & Lifeng Xi, 2019. "Manufacturing paradigm-oriented PHM methodologies for cyber-physical systems," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1659-1672, April.
    8. João Dias-Ferreira & Luis Ribeiro & Hakan Akillioglu & Pedro Neves & Mauro Onori, 2018. "BIOSOARM: a bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1659-1682, October.
    9. Jeff Morgan & Garret E. O’Donnell, 2018. "Cyber physical process monitoring systems," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1317-1328, August.
    10. Ahmad E. Elhabashy & Lee J. Wells & Jaime A. Camelio & William H. Woodall, 2019. "A cyber-physical attack taxonomy for production systems: a quality control perspective," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2489-2504, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Zhang Yu & Muhammad Umar & S. Abdul Rehman, 2022. "Adoption of technological innovation and recycling practices in automobile sector: under the Covid-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 298-306, June.
    4. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    6. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2025. "Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 61-93, January.
    7. Maurizio Bevilacqua & Eleonora Bottani & Filippo Emanuele Ciarapica & Francesco Costantino & Luciano Di Donato & Alessandra Ferraro & Giovanni Mazzuto & Andrea Monteriù & Giorgia Nardini & Marco Orten, 2020. "Digital Twin Reference Model Development to Prevent Operators’ Risk in Process Plants," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    8. Simon Gorecki & Jalal Possik & Gregory Zacharewicz & Yves Ducq & Nicolas Perry, 2020. "A Multicomponent Distributed Framework for Smart Production System Modeling and Simulation," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    9. Chen, Ziyue & Huang, Lizhen, 2021. "Digital twins for information-sharing in remanufacturing supply chain: A review," Energy, Elsevier, vol. 220(C).
    10. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    11. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    12. Shimin Liu & Pai Zheng & Jinsong Bao, 2024. "Digital Twin-based manufacturing system: a survey based on a novel reference model," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2517-2546, August.
    13. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Arulsamy, Karen & Delaney, Liam, 2022. "The impact of automatic enrolment on the mental health gap in pension participation: Evidence from the UK," Journal of Health Economics, Elsevier, vol. 86(C).
    15. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Hendrik Haße & Hendrik Valk & Frederik Möller & Boris Otto, 2022. "Design Principles for Shared Digital Twins in Distributed Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 751-772, December.
    17. Szymon Cyfert & Waldemar Glabiszewski & Maciej Zastempowski, 2021. "Impact of Management Tools Supporting Industry 4.0 on the Importance of CSR during COVID-19. Generation Z," Energies, MDPI, vol. 14(6), pages 1-13, March.
    18. Terje Andersen & Bjørn Jæger & Alok Mishra, 2020. "Circularity in Waste Electrical and Electronic Equipment (WEEE) Directive. Comparison of a Manufacturer’s Danish and Norwegian Operations," Sustainability, MDPI, vol. 12(13), pages 1-15, June.
    19. Yiwei Wang & Jian Zhou & Lianyu Zheng & Christian Gogu, 2022. "An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 809-830, March.
    20. Shashi Bhushan Jha & Radu F. Babiceanu & Remzi Seker, 2020. "Formal modeling of cyber-physical resource scheduling in IIoT cloud environments," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1149-1164, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01512-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.