IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v29y2000i3p433-450.html
   My bibliography  Save this article

Player splitting in extensive form games

Author

Listed:
  • Dries Vermeulen

    (Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands)

  • Mathijs Jansen

    (Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands)

  • Andrés Perea y Monsuwé

    () (Department of Economics, Universidad Carlos III de Madrid, Calle Madrid 126, 28903 Getafe-Madrid, Spain)

Abstract

By a player splitting we mean a mechanism that distributes the information sets of a player among so-called agents. A player splitting is called independent if each path in the game tree contains at most one agent of every player. Following Mertens (1989), a solution is said to have the player splitting property if, roughly speaking, the solution of an extensive form game does not change by applying independent player splittings. We show that Nash equilibria, perfect equilibria, Kohlberg-Mertens stable sets and Mertens stable sets have the player splitting property. An example is given to show that the proper equilibrium concept does not satisfy the player splitting property. Next, we give a definition of invariance under (general) player splittings which is an extension of the player splitting property to the situation where we also allow for dependent player splittings. We come to the conclusion that, for any given dependent player splitting, each of the above solutions is not invariant under this player splitting. The results are used to give several characterizations of the class of independent player splittings and the class of single appearance structures by means of invariance of solution concepts under player splittings.

Suggested Citation

  • Dries Vermeulen & Mathijs Jansen & Andrés Perea y Monsuwé, 2000. "Player splitting in extensive form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(3), pages 433-450.
  • Handle: RePEc:spr:jogath:v:29:y:2000:i:3:p:433-450
    Note: Received: December 1996/Revised Version: January 2000
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00182/papers/0029003/00290433.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-François Mertens, 2004. "Ordinality in non cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 387-430, June.
    2. In-Koo Cho & David M. Kreps, 1987. "Signaling Games and Stable Equilibria," The Quarterly Journal of Economics, Oxford University Press, vol. 102(2), pages 179-221.
    3. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Extensive form games; equilibrium refinements; player splitting.;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:29:y:2000:i:3:p:433-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.