IDEAS home Printed from https://ideas.repec.org/a/spr/jecfin/v48y2024i1d10.1007_s12197-023-09644-9.html
   My bibliography  Save this article

Volatility transmissions and connectivity among metal and energy commodities: a network-econometric analysis

Author

Listed:
  • Mathias Schneid Tessmann

    (Brazilian Institute of Education, Development and Research (IDP))

  • Carlos Enrique Carrasco-Gutierrez

    (Catholic University of Brasília (UCB))

  • Marcelo Oliveira Passos

    (Federal University of Pelotas (UFPel))

  • Luiz Augusto Magalhães

    (Brazilian Institute of Education, Development and Research (IDP))

  • Régis Augusto Ely

    (Federal University of Pelotas (UFPel))

Abstract

We assessed volatility transmissions that occurred (inter and intra) commodities of metals and energy from October 16, 1998 to October 17, 2018. With a total of 5220 price observations for each commodity, we estimate spillover indexes. We measure such transmissions among twelve commodities and computed the parcels of shock's effects in each pairwise of assets. We also compute how much of these volatilities transmissions was absorbed by each asset in these markets. And using complex network statistics metrics, we describe statistically and graphically these transmissions. Our results pointed that total connectivity is 53% and, through the network analysis, we realize that the greatest interactions occur involving oil and nickel and gold and silver. We confirm the findings of Arouri, et al. (2013) that most precious metals can be a good hedge option in stock portfolios and other assets, especially when there are crises or increased uncertainties in international financial markets. Indeed, we also attested to the conclusion of Papenfuß et al. (2021) that the value of metals was what, among the factors analyzed by them, had a relevant negative effect on the pricing and forecasting. We believe that these evidence are useful for the literatures of financial networks and metallic/energetic commodity markets; as well for investors, risk managers, fund managers, policy makers and metals and energy's producers and buyers.

Suggested Citation

  • Mathias Schneid Tessmann & Carlos Enrique Carrasco-Gutierrez & Marcelo Oliveira Passos & Luiz Augusto Magalhães & Régis Augusto Ely, 2024. "Volatility transmissions and connectivity among metal and energy commodities: a network-econometric analysis," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 48(1), pages 51-77, March.
  • Handle: RePEc:spr:jecfin:v:48:y:2024:i:1:d:10.1007_s12197-023-09644-9
    DOI: 10.1007/s12197-023-09644-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12197-023-09644-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12197-023-09644-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John T Cuddington & Daniel Jerrett, 2008. "Super Cycles in Real Metals Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 55(4), pages 541-565, December.
    2. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    3. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    4. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    5. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    6. Runjie Xu & Chuanmin Mi & Rafal Mierzwiak & Runyu Meng, 2019. "Complex Network Construction of Internet Financial risk," Papers 1904.06640, arXiv.org, revised Aug 2019.
    7. Li, Yanshuang & Zhuang, Xintian & Wang, Jian & Zhang, Weiping, 2020. "Analysis of the impact of Sino-US trade friction on China’s stock market based on complex networks," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arif, Muhammad & Hasan, Mudassar & Alawi, Suha M. & Naeem, Muhammad Abubakr, 2021. "COVID-19 and time-frequency connectedness between green and conventional financial markets," Global Finance Journal, Elsevier, vol. 49(C).
    2. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    5. Miklesh Yadav & Nandita Mishra & Shruti Ashok, 2023. "Dynamic connectedness of green bond with financial markets of European countries under OECD economies," Economic Change and Restructuring, Springer, vol. 56(1), pages 609-631, February.
    6. Hasan, Mudassar & Arif, Muhammad & Naeem, Muhammad Abubakr & Ngo, Quang-Thanh & Taghizadeh–Hesary, Farhad, 2021. "Time-frequency connectedness between Asian electricity sectors," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 208-224.
    7. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    8. Su, Tong & Lin, Boqiang, 2024. "Reassessing the information transmission and pricing influence of Shanghai crude oil futures: A time-varying perspective," Energy Economics, Elsevier, vol. 140(C).
    9. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    10. Claeys, Peter & Vašíček, Bořek, 2014. "Measuring bilateral spillover and testing contagion on sovereign bond markets in Europe," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 151-165.
    11. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    12. Aysan, Ahmet Faruk & Batten, Jonathan & Gozgor, Giray & Khalfaoui, Rabeh & Nanaeva, Zhamal, 2024. "Metaverse and financial markets: A quantile-time-frequency connectedness analysis," Research in International Business and Finance, Elsevier, vol. 72(PB).
    13. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    15. Vladimir Arčabić, 2020. "Koronakriza i što Hrvatska može naučiti iz dosadašnjih recesija," Tradicionalni skup Hrvatskog društva ekonomista u Opatiji - objavljena poglavlja, in: Josip Tica & Katarina Bačić (ed.), Ekonomska politika u 2021. godini - Hrvatska poslije pandemije, volume 28, chapter 1, pages 21-58, Hrvatsko društvo ekonomista (Croatian Society of Economists).
    16. Liow, Kim Hiang & Huang, Yuting, 2018. "The dynamics of volatility connectedness in international real estate investment trusts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 195-210.
    17. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    18. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    19. Costola, Michele & Lorusso, Marco, 2022. "Spillovers among energy commodities and the Russian stock market," Journal of Commodity Markets, Elsevier, vol. 28(C).
    20. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).

    More about this item

    Keywords

    Commodities; Metals; Volatility; Complex networks; Spillovers;
    All these keywords.

    JEL classification:

    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:48:y:2024:i:1:d:10.1007_s12197-023-09644-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.