IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v8y2025i4d10.1007_s42001-025-00422-7.html
   My bibliography  Save this article

Filter bubbles as a vector of tradition? Decoding opinion dynamics with agent-based modelling

Author

Listed:
  • Benoît Desmarchelier

    (Sorbonne Paris-Nord University)

  • Faridah Djellal

    (University of Lille)

  • Faïz Gallouj

    (University of Lille)

Abstract

This paper investigates the relationship between online filter bubbles and the emergence of echo chambers. In particular, building on an agent-based simulation model, we find that the narrower the filter bubble, the larger the number of echo chambers, and the lower the degree of consensus among the population of agents as a whole. According to the existing literature, echo chambers present risks of polarization, extremism and separatism. Yet, we do not recommend reinforcing the regulation of filter bubbles. Indeed, our model suggests that the presence of sources of serendipitous knowledge, like for instance in the form of third places, can prevent the apparition of echo chambers, even in the presence of narrow filter bubbles. Going back to Gabriel Tarde’s classical distinction between opinion, tradition, and reason, we argue that sources of serendipitous knowledge favor the development of a society of opinion, while echo chambers resemble micro-societies of tradition. In this perspective, current developments of information technologies produce a tension between tradition and opinion.

Suggested Citation

  • Benoît Desmarchelier & Faridah Djellal & Faïz Gallouj, 2025. "Filter bubbles as a vector of tradition? Decoding opinion dynamics with agent-based modelling," Journal of Computational Social Science, Springer, vol. 8(4), pages 1-22, November.
  • Handle: RePEc:spr:jcsosc:v:8:y:2025:i:4:d:10.1007_s42001-025-00422-7
    DOI: 10.1007/s42001-025-00422-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-025-00422-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-025-00422-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    2. Marijn Keijzer & Michael Mäs & Andreas Flache, 2024. "Polarization on social media : micro-level evidence and macro-level implications," Post-Print hal-04459180, HAL.
    3. Marijn Keijzer & Michael Mäs & Andreas Flache, 2024. "Polarization on Social Media: Micro-Level Evidence and Macro-Level Implications," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 27(1), pages 1-7.
    4. Benjamin Golub & Matthew O. Jackson, 2010. "Naïve Learning in Social Networks and the Wisdom of Crowds," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 112-149, February.
    5. Dennis Jacob & Sven Banisch, 2023. "Polarization in Social Media: A Virtual Worlds-Based Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(3), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    2. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Crès, Hervé & Tvede, Mich, 2022. "Aggregation of opinions in networks of individuals and collectives," Journal of Economic Theory, Elsevier, vol. 199(C).
    4. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    6. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    8. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    9. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    10. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org, revised Sep 2025.
    11. Levy, Gilat & Razin, Ronny, 2018. "Information diffusion in networks with the Bayesian Peer Influence heuristic," Games and Economic Behavior, Elsevier, vol. 109(C), pages 262-270.
    12. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    13. Meshal Aldawsari & Mahmoud M. El-Halwagi, 2025. "Resilience Assessment and Sustainability Enhancement of Gas and CO 2 Utilization via Carbon–Hydrogen–Oxygen Symbiosis Networks," Sustainability, MDPI, vol. 17(19), pages 1-22, September.
    14. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    15. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Yu Gong & Xiaojiang Xu & Changping Zhao & Tobias Schoenherr, 2024. "Multi-Tier Supply Chain Learning Networks: A Simulation Study Based on the Experience-Weighted Attraction (EWA) Model," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    17. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    18. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2021. "Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment," American Economic Journal: Microeconomics, American Economic Association, vol. 13(3), pages 163-197, August.
    19. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Cátia Batista & Marcel Fafchamps & Pedro C. Vicente, 2018. "Keep It Simple: A Field Experiment on Information Sharing in Social Networks," NBER Working Papers 24908, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:8:y:2025:i:4:d:10.1007_s42001-025-00422-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.