IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i2d10.1007_s13253-025-00695-5.html
   My bibliography  Save this article

Approximate Bayesian Inference for High-Resolution Spatial Disaggregation Using Alternative Data Sources

Author

Listed:
  • Anis Pakrashi

    (Pennsylvania State University)

  • Arnab Hazra

    (Indian Institute of Technology Kanpur)

  • Sooraj M. Raveendran

    (Indian Institute for Human Settlements)

  • Krishnachandran Balakrishnan

    (MapSolve AI Bangalore, and Indian Institute for Human Settlements)

Abstract

This paper addresses the challenge of obtaining precise demographic information at a fine-grained spatial level, which is a necessity for planning localized public services such as water distribution networks, or understanding local human impacts on the ecosystem. While population sizes are commonly available for large administrative areas, such as wards in India, practical applications often demand knowledge of population density at smaller spatial scales. We explore the integration of alternative data sources, specifically satellite-derived products, including land cover, land use, street density, building heights, vegetation coverage, and drainage density. Using a case study focused on Bangalore City, India, with a ward-level population dataset for 198 wards and satellite-derived sources covering 786,702 pixels at a resolution of 30 m $$\times $$ × 30 m, we propose a semiparametric Bayesian spatial regression model for obtaining pixel-level population estimates. Given the high dimensionality of the problem, exact Bayesian inference is deemed impractical; we discuss an approximate Bayesian inference scheme based on the recently proposed max-and-smooth approach, a combination of Laplace approximation and Markov chain Monte Carlo. A simulation study validates the reasonable performance of our inferential approach. Mapping pixel-level estimates to the ward level demonstrates the effectiveness of our method in capturing the spatial distribution of population sizes. While our case study focuses on a demographic application, the methodology developed here readily applies to count-type spatial datasets from various scientific disciplines where high-resolution alternative data sources are available.

Suggested Citation

  • Anis Pakrashi & Arnab Hazra & Sooraj M. Raveendran & Krishnachandran Balakrishnan, 2025. "Approximate Bayesian Inference for High-Resolution Spatial Disaggregation Using Alternative Data Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 576-599, June.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:2:d:10.1007_s13253-025-00695-5
    DOI: 10.1007/s13253-025-00695-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-025-00695-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-025-00695-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel Araujo Oliveira & Ayane Aparecida Silva Ribeiro & José Almir Cirilo, 2023. "Collaborative spatial information as an alternative data source for hydrodynamic model calibration: a Pernambuco State case study, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1535-1559, September.
    2. Margot Rudstrom & Michael Popp & Patrick Manning & Edward Gbur, 2002. "Data Aggregation Issues for Crop Yield Risk Analysis," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 50(2), pages 185-200, July.
    3. Priyanka Anjoy & Hukum Chandra & Pradip Basak, 2019. "Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(1), pages 251-273, July.
    4. Yegnanew A. Shiferaw, 2023. "Mapping Disaggregate-Level Agricultural Households in South Africa Using a Hierarchical Bayes Small Area Estimation Approach," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    5. Sara Martino & Rupali Akerkar & Håvard Rue, 2011. "Approximate Bayesian Inference for Survival Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 514-528, September.
    6. Yalei Yang & Hao Gao & Colin Berry & David Carrick & Aleksandra Radjenovic & Dirk Husmeier, 2022. "Classification of myocardial blood flow based on dynamic contrast‐enhanced magnetic resonance imaging using hierarchical Bayesian models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1085-1115, November.
    7. Chun-Hu Li & Jun-Jie Mao & You-Jia Wu & Bin Zhang & Xun Zhuang & Gang Qin & Hong-Mei Liu, 2023. "Combined impacts of environmental and socioeconomic covariates on HFMD risk in China: A spatiotemporal heterogeneous perspective," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(5), pages 1-19, May.
    8. Roger S. Bivand & David W. S. Wong, 2018. "Comparing implementations of global and local indicators of spatial association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 716-748, September.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    11. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    12. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2009. "Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach," Agricultural Systems, Elsevier, vol. 99(2-3), pages 126-140, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    2. Van Niekerk, Janet & Krainski, Elias & Rustand, Denis & Rue, Håvard, 2023. "A new avenue for Bayesian inference with INLA," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    3. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    4. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    5. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    6. Ben Seiyon Lee & Murali Haran, 2025. "A class of models for large zero-inflated spatial data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 746-768, September.
    7. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    8. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    9. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    10. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    11. Tzu‐Han Peng & Cheng‐Ching Lin & Nan‐Jung Hsu & Chun‐Shu Chen, 2025. "A Spatial Hierarchical PGEV Model With Temporal Effects for Enhancing Extreme Value Analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
    12. Fasil Wagnew & Kefyalew Addis Alene & Matthew Kelly & Darren Gray, 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia," IJERPH, MDPI, vol. 20(21), pages 1-15, October.
    13. Leonardo Cefalo & Paolo Maranzano, 2025. "A comprehensive analysis of the Italian school system using harmonised open data via the SchoolDataIT R package," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 815-839, September.
    14. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    15. Vitor Dias Rocio & Márcio Poletti Laurini, 2023. "Bayesian spatio-temporal modeling of real estate launch prices," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-47, December.
    16. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    18. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    19. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    20. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:2:d:10.1007_s13253-025-00695-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.