IDEAS home Printed from
   My bibliography  Save this article

Disaggregated spatial modelling for areal unit categorical data


  • Eric C. Tassone
  • Marie Lynn Miranda
  • Alan E. Gelfand


We consider joint spatial modelling of areal multivariate categorical data assuming a multiway contingency table for the variables, modelled by using a log-linear model, and connected across units by using spatial random effects. With no distinction regarding whether variables are response or explanatory, we do not limit inference to conditional probabilities, as in customary spatial logistic regression. With joint probabilities we can calculate arbitrary marginal and conditional probabilities without having to refit models to investigate different hypotheses. Flexible aggregation allows us to investigate subgroups of interest; flexible conditioning enables not only the study of outcomes given risk factors but also retrospective study of risk factors given outcomes. A benefit of joint spatial modelling is the opportunity to reveal disparities in health in a richer fashion, e.g. across space for any particular group of cells, across groups of cells at a particular location, and, hence, potential space-group interaction. We illustrate with an analysis of birth records for the state of North Carolina and compare with spatial logistic regression. Copyright (c) 2010 Royal Statistical Society.

Suggested Citation

  • Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:175-190

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    2. Julian Besag & Jeremy York & Annie MolliƩ, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:175-190. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.