IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i3p612-621.html
   My bibliography  Save this article

Hierarchical Bayesian bivariate disease mapping: analysis of children and adults asthma visits to hospital

Author

Listed:
  • Mahmoud Torabi

Abstract

In spatial epidemiology, detecting areas with high ratio of disease is important as it may lead to identifying risk factors associated with disease. This in turn may lead to further epidemiological investigations into the nature of disease. Disease mapping studies have been widely performed with considering only one disease in the estimated models. Simultaneous modelling of different diseases can also be a valuable tool both from the epidemiological and also from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, one can consider multivariate models in order to handle the dependence among the multivariate components and the spatial dependence between locations. In this paper, spatial models that use multivariate conditionally autoregressive smoothing across the spatial dimension are considered. We study the patterns of incidence ratios and identify areas with consistently high ratio estimates as areas for further investigation. A hierarchical Bayesian approach using Markov chain Monte Carlo techniques is employed to simultaneously examine spatial trends of asthma visits by children and adults to hospital in the province of Manitoba, Canada, during 2000--2010.

Suggested Citation

  • Mahmoud Torabi, 2014. "Hierarchical Bayesian bivariate disease mapping: analysis of children and adults asthma visits to hospital," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 612-621, March.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:3:p:612-621
    DOI: 10.1080/02664763.2013.847066
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.847066
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.847066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fedele Greco & Carlo Trivisano, 2008. "A Bivariate Car Model For Improving The Estimation Of Relative Risks," Statistica, Department of Statistics, University of Bologna, vol. 68(3), pages 327-347.
    2. Mahmoud Torabi, 2012. "Spatial modeling using frequentist approach for disease mapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2431-2439, July.
    3. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    4. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    5. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    6. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    7. Kim H. & Sun D. & Tsutakawa R.K., 2001. "A Bivariate Bayes Method for Improving the Estimates of Mortality Rates With a Twofold Conditional Autoregressive Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1506-1521, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra M Ouédraogo & Eric J Crighton & Michael Sawada & Teresa To & Kevin Brand & Eric Lavigne, 2018. "Exploration of the spatial patterns and determinants of asthma prevalence and health services use in Ontario using a Bayesian approach," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    2. Ying C. MacNab, 2023. "On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 263-293, March.
    3. Ippoliti, L. & Martin, R.J. & Romagnoli, L., 2018. "Efficient likelihood computations for some multivariate Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 185-200.
    4. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    5. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    6. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    7. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    8. Fedele Greco & Carlo Trivisano, 2018. "Comments on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 549-553, September.
    9. Lan Hu & Daniel A. Griffith & Yongwan Chun, 2018. "Space-Time Statistical Insights about Geographic Variation in Lung Cancer Incidence Rates: Florida, USA, 2000–2011," IJERPH, MDPI, vol. 15(11), pages 1-18, October.
    10. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    12. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    13. MacNab, Ying C. & Lin, Yi, 2009. "On empirical Bayes penalized quasi-likelihood inference in GLMMs and in Bayesian disease mapping and ecological modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2950-2967, June.
    14. Minnie M. Joo & Brandon Bolte & Nguyen Huynh & Bumba Mukherjee, 2023. "Bayesian Spatial Split-Population Survival Model with Applications to Democratic Regime Failure and Civil War Recurrence," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    15. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    16. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    17. Carlos García & Zaida Quiroz & Marcos Prates, 2023. "Bayesian spatial quantile modeling applied to the incidence of extreme poverty in Lima–Peru," Computational Statistics, Springer, vol. 38(2), pages 603-621, June.
    18. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    19. Miklos Arato, N. & Dryden, Ian L. & Taylor, Charles C., 2006. "Hierarchical Bayesian modelling of spatial age-dependent mortality," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1347-1363, November.
    20. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:3:p:612-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.