An individual-group-merchant relation model for identifying fake online reviews: an empirical study on a Chinese e-commerce platform
Author
Abstract
Suggested Citation
DOI: 10.1007/s10799-018-0288-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ajay Kumar & Ram D. Gopal & Ravi Shankar & Kim Hua Tan, 2022. "Fraudulent review detection model focusing on emotional expressions and explicit aspects : investigating the potential of feature engineering," Post-Print hal-03630420, HAL.
- Maryam Ataei & Ali Divsalar & Morteza Saberi, 2024. "The bi-objective orienteering problem with hotel selection: an integrated text mining optimisation approach," Information Technology and Management, Springer, vol. 25(3), pages 247-275, September.
- Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
- Ben Jabeur, Sami & Ballouk, Hossein & Ben Arfi, Wissal & Sahut, Jean-Michel, 2023. "Artificial intelligence applications in fake review detection: Bibliometric analysis and future avenues for research," Journal of Business Research, Elsevier, vol. 158(C).
- Banerjee, Snehasish & Chua, Alton Y.K., 2023. "Understanding online fake review production strategies," Journal of Business Research, Elsevier, vol. 156(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
- Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
- Uttara M. Ananthakrishnan & Beibei Li & Michael D. Smith, 2020. "A Tangled Web: Should Online Review Portals Display Fraudulent Reviews?," Information Systems Research, INFORMS, vol. 31(3), pages 950-971, September.
- Dan Ke & Heci Zhang & Ning Yu & Yanbin Tu, 2021. "Who will stay with the brand after posting non-5/5 rating of purchase? An empirical study of online consumer repurchase behavior," Information Systems and e-Business Management, Springer, vol. 19(2), pages 405-437, June.
- Xian Wang & Huixian Li & Qingyi Wang & Alison Noble, 2023. "Consumers’ Concerns Regarding Product Quality: Evidence From Chinese Online Reviews," SAGE Open, , vol. 13(1), pages 21582440231, March.
- Muhammad Rifki Shihab & Audry Pragita Putri, 2019. "Negative online reviews of popular products: understanding the effects of review proportion and quality on consumers’ attitude and intention to buy," Electronic Commerce Research, Springer, vol. 19(1), pages 159-187, March.
- Irina Heimbach & Oliver Hinz, 2018. "The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks," Information Systems Research, INFORMS, vol. 29(3), pages 592-611, September.
- Jifeng Luo & Ying Rong & Huan Zheng, 2020. "Impacts of logistics information on sales: Evidence from Alibaba," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 646-669, December.
- Mahesh Balan U & Saji K. Mathew, 2021. "Personalize, Summarize or Let them Read? A Study on Online Word of Mouth Strategies and Consumer Decision Process," Information Systems Frontiers, Springer, vol. 23(3), pages 627-647, June.
- Day, Steven James & Fan, Xinyi & Shou, Yongyi, 2024. "Digital technology use decisions by micro- and small-sized complementors in ecosystems: The influence of subjective norms," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
- Lanfei Shi & Siva Viswanathan, 2023. "Optional Verification and Signaling in Online Matching Markets: Evidence from a Randomized Field Experiment," Information Systems Research, INFORMS, vol. 34(4), pages 1603-1621, December.
- Xin (Shane) Wang & Feng Mai & Roger H. L. Chiang, 2014. "Database Submission ---Market Dynamics and User-Generated Content About Tablet Computers," Marketing Science, INFORMS, vol. 33(3), pages 449-458, May.
- Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2019. "Prescribing Response Strategies to Manage Customer Opinions: A Stochastic Differential Equation Approach," Information Systems Research, INFORMS, vol. 30(2), pages 351-374, June.
- Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
- Wei Hong & Changyuan Zheng & Linhai Wu & Xujin Pu, 2019. "Analyzing the Relationship between Consumer Satisfaction and Fresh E-Commerce Logistics Service Using Text Mining Techniques," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
- Park, Sangwon & Nicolau, Juan L., 2017. "Effects of general and particular online hotel ratings," Annals of Tourism Research, Elsevier, vol. 62(C), pages 114-116.
- S. Cicognani & P. Figini & M. Magnani, 2016. "Social Influence Bias in Online Ratings: A Field Experiment," Working Papers wp1060, Dipartimento Scienze Economiche, Universita' di Bologna.
- Ting Li & Robert J. Kauffman & Eric van Heck & Peter Vervest & Benedict G. C. Dellaert, 2014. "Consumer Informedness and Firm Information Strategy," Information Systems Research, INFORMS, vol. 25(2), pages 345-363, June.
- Kunz, Werner & Seshadri, Sukanya, 2015. "From virtual travelers to real friends: Relationship-building insights from an online travel community," Journal of Business Research, Elsevier, vol. 68(9), pages 1822-1828.
- Wei-Lun Chang & Yi-Pei Chen, 2019. "Way too sentimental? a credible model for online reviews," Information Systems Frontiers, Springer, vol. 21(2), pages 453-468, April.
More about this item
Keywords
Fake review identification; User behaviour modelling; Opinion mining; Unsupervised machine learning; IGMRM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:20:y:2019:i:3:d:10.1007_s10799-018-0288-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.