IDEAS home Printed from https://ideas.repec.org/a/spr/infotm/v25y2024i3d10.1007_s10799-022-00377-5.html
   My bibliography  Save this article

The bi-objective orienteering problem with hotel selection: an integrated text mining optimisation approach

Author

Listed:
  • Maryam Ataei

    (Babol Noshirvani University of Technology)

  • Ali Divsalar

    (Babol Noshirvani University of Technology)

  • Morteza Saberi

    (University of Technology)

Abstract

To assist the tourist in planning a more desirable trip according to his/her preferences, a variety of elements including accommodation, sightseeing locations, cost budget, and time constraints should be considered. To provide such a through planning, the Orienteering Problem with Hotel Selection (OPHS) has been recently introduced in the literature. However the current OPHS variants do not use hotels’ aspects in their modelling thereby are not able to provide a comprehensive planning. In this work, we address this gap by introducing a bi-objective OPHS which maximises the utility of the sightseeing, as well as the total weighted scores of hotel selection and provides multi day tourist trip plans. Moreover, as cities become smarter, colossal data can be used to facilitate tourist trip planning according to the preferences of tourists. In this research, we leverage the power of relevant external data thereby providing effective tourist plans. In particular, a decision-making framework is proposed for the multi-day tourist planning with hotel selection. This Integrated Text-mining Optimisation Framework consists of three modules. First, the accommodations’ scoring is measured by Aspect-Based Sentiment Analysis on existing reviews, looking at fifteen quality aspects of hotels. Second, four different tourist segments are considered, and the priority for each of the hotel’s aspects in each segment is calculated using the Best-Worst Method. The third module is solving the bi-objective OPHS to provide the desired plans for the tourist. To evaluate the applicability of the method, a real-world data set is analysed.

Suggested Citation

  • Maryam Ataei & Ali Divsalar & Morteza Saberi, 2024. "The bi-objective orienteering problem with hotel selection: an integrated text mining optimisation approach," Information Technology and Management, Springer, vol. 25(3), pages 247-275, September.
  • Handle: RePEc:spr:infotm:v:25:y:2024:i:3:d:10.1007_s10799-022-00377-5
    DOI: 10.1007/s10799-022-00377-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10799-022-00377-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10799-022-00377-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah Jahan Miah & HuyQuan Vu & John Gammack, 2019. "A big-data analytics method for capturing visitor activities and flows: the case of an island country," Information Technology and Management, Springer, vol. 20(4), pages 203-221, December.
    2. Rui Duan & Cuiqing Jiang & Hemant K. Jain & Yong Ding & Deyou Shu, 2019. "Integrating geographical and temporal influences into location recommendation: a method based on check-ins," Information Technology and Management, Springer, vol. 20(2), pages 73-90, June.
    3. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    4. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    5. Divsalar, A. & Vansteenwegen, P. & Sörensen, K. & Cattrysse, D., 2014. "A memetic algorithm for the orienteering problem with hotel selection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 29-49.
    6. Chuanming Yu & Yuheng Zuo & Bolin Feng & Lu An & Baiyun Chen, 2019. "An individual-group-merchant relation model for identifying fake online reviews: an empirical study on a Chinese e-commerce platform," Information Technology and Management, Springer, vol. 20(3), pages 123-138, September.
    7. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    8. Divsalar, A. & Vansteenwegen, P. & Cattrysse, D., 2013. "A variable neighborhood search method for the orienteering problem with hotel selection," International Journal of Production Economics, Elsevier, vol. 145(1), pages 150-160.
    9. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadri Sylejmani & Vigan Abdurrahmani & Arben Ahmeti & Egzon Gashi, 2024. "Solving the tourist trip planning problem with attraction patterns using meta-heuristic techniques," Information Technology & Tourism, Springer, vol. 26(4), pages 633-678, December.
    2. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    3. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    4. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    5. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    6. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    7. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    8. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    9. Du, Jiaoman & Zhou, Jiandong & Li, Xiang & Li, Lei & Guo, Ao, 2021. "Integrated self-driving travel scheme planning," International Journal of Production Economics, Elsevier, vol. 232(C).
    10. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    11. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    12. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    13. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    14. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    15. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    16. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    17. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    18. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    19. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    20. Roberto Aringhieri & Sara Bigharaz & Davide Duma & Alberto Guastalla, 2022. "Fairness in ambulance routing for post disaster management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 189-211, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:25:y:2024:i:3:d:10.1007_s10799-022-00377-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.