IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i5d10.1007_s13198-018-0721-1.html
   My bibliography  Save this article

Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: frequency control using FA and CSA optimized controller

Author

Listed:
  • Abdul Latif

    (NIT Silchar)

  • Arup Pramanik

    (NIT Silchar)

  • Dulal Chandra Das

    (NIT Silchar)

  • Israfil Hussain

    (NIT Silchar)

  • Sudhanshu Ranjan

    (NIT Silchar)

Abstract

Large integration of renewable energy in hybrid power system in isolated mode of operation make frequency control a challenging task. This paper investigates the performance of Cuckoo Search Algorithm (CSA) and Firefly Algorithm (FA) based frequency control strategy of such a hybrid power system, which is a unique work. The generating units of the system are plug in hybrid vehicle (PHEV), wind turbine generators, a diesel engine generator (DEG) and battery energy storage system (BESS). The proportional plus integral (PI)/proportional integral derivative (PID) controllers are employed with PHEV, DEG and BESS to adjust the total active power generation in accordance to the load demand. Addition of PHEV reduces the reliance on the DEG or BESS as a result of variability and uncertainty of wind power. Different disturbance conditions such as step perturbations, random variations of load as well as wind output power, have been considered in the case studies under Matlab simulation to assess the performance of CSA and FA based control strategy. Analysis indicates that CSA based PID controller provides better response compare to GA, PSO and FA based PI/PID controller and CSA based PI controller. Sensitivity analysis has been carried out to check the robustness of FA and CSA optimized PI/PID controller gains.

Suggested Citation

  • Abdul Latif & Arup Pramanik & Dulal Chandra Das & Israfil Hussain & Sudhanshu Ranjan, 2018. "Plug in hybrid vehicle-wind-diesel autonomous hybrid power system: frequency control using FA and CSA optimized controller," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1147-1158, October.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:5:d:10.1007_s13198-018-0721-1
    DOI: 10.1007/s13198-018-0721-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-018-0721-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-018-0721-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pannell, David J., 1997. "Sensitivity analysis of normative economic models: theoretical framework and practical strategies," Agricultural Economics, Blackwell, vol. 16(2), pages 139-152, May.
    2. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    3. Anupama Kaushik & Shivi Verma & Harsh Jot Singh & Gitika Chhabra, 2017. "Software cost optimization integrating fuzzy system and COA-Cuckoo optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1461-1471, November.
    4. S. Muhammad Bagher Sadati & Jamal Moshtagh & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Risk-Based Bi-Level Model for Simultaneous Profit Maximization of a Smart Distribution Company and Electric Vehicle Parking Lot Owner," Energies, MDPI, vol. 10(11), pages 1-16, October.
    5. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    3. Sudhanshu Ranjan & D. C. Das & A. Latif & N. Sinha, 2021. "Electric vehicles to renewable-three unequal areas-hybrid microgrid to contain system frequency using mine blast algorithm based control strategy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 961-975, October.
    4. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.
    5. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2021. "Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid," Energies, MDPI, vol. 14(9), pages 1-15, April.
    6. Israfil Hussain & Dulal Chandra Das & Nidul Sinha & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller," Energies, MDPI, vol. 13(21), pages 1-20, October.
    7. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2020. "Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI − (1 + ID) Controller for Frequency Response of a Microgrid," Energies, MDPI, vol. 13(13), pages 1-12, July.
    8. Sanjiv Kumar Jain & Sandeep Bhongade & Shweta Agrawal & Abolfazl Mehbodniya & Bhisham Sharma & Subrata Chowdhury & Julian L. Webber, 2023. "Interrelated Solar and Thermal Plant Autonomous Generation Control Utilizing Metaheuristic Optimization," Energies, MDPI, vol. 16(8), pages 1-21, April.
    9. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    3. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    4. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    5. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    6. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    7. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    9. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    10. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    11. Kopke, Emma & Kingwell, Ross S. & Young, John, 2005. "A farm-level economic assessment of the Australian Merino, Dohne Merino, and South African Meat Merino sheep breeds in southern Australia," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137934, Australian Agricultural and Resource Economics Society.
    12. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    13. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    14. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    15. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    16. Guthrie, R. & Purse, Kevin & Lurie, P., 2006. "Workers' Compensation Western Australia; a Case Study 1993 - 2004," Australian Bulletin of Labour, National Institute of Labour Studies, vol. 32(1), pages 62-73.
    17. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    18. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    19. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    20. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:5:d:10.1007_s13198-018-0721-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.