IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i5d10.1007_s13198-025-02759-8.html
   My bibliography  Save this article

Forecasting future trends: a comprehensive analysis of korea composite stock price index using advanced predictive models

Author

Listed:
  • Xinjian Zhang

    (Harbin University)

  • FanDe Kong

    (Gyeonggi University)

  • Xuefeng liu

    (Harbin University)

  • QiJi Liu

    (Gyeonggi University
    Nanjing Institute of Inclusive Child Potential Development)

Abstract

Stock markets play a vital role in the economy of any nation, providing capital to businesses and avenues for investors to share in the profits of corporations. Stock price prediction is a complex task due to the various factors affecting market fluctuations. The potential for substantial financial gain is an important motivator for accurate forecasting in the stock market. This study proposes a hybrid model for forecasting that combines Decision Trees (DTs), Wavelet Transform (WT), and Battle Royale Optimizer (BRO). The model is further improved by the inclusion of decomposition and optimization techniques with robust data preparation. The analysis, based on the Korea Composite Stock Price Index (KOSPI) from January 1st, 2015, to July 25th, 2023, reveals that the WT-BRO-DT model significantly outperforms other methods by achieving a coefficient of determination value of 0.992. This research addresses the existing gaps in stock market forecasting by integrating advanced machine learning techniques that improve the accuracy of the predictions. While previous models have shown limitations in handling complex data and achieving high accuracy, this work offers a more reliable solution to help investors and analysts make better-informed decisions, reduce risk, and optimize returns. These findings have practical implications for financial decision-making and contribute to the improvement in the accuracy of forecasts of stock markets.

Suggested Citation

  • Xinjian Zhang & FanDe Kong & Xuefeng liu & QiJi Liu, 2025. "Forecasting future trends: a comprehensive analysis of korea composite stock price index using advanced predictive models," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(5), pages 1945-1962, May.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:5:d:10.1007_s13198-025-02759-8
    DOI: 10.1007/s13198-025-02759-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02759-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02759-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Hongduo Cao & Tiantian Lin & Ying Li & Hanyu Zhang, 2019. "Stock Price Pattern Prediction Based on Complex Network and Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-12, May.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Lee, Chang-Yong, 2009. "Characteristics of the volatility in the Korea composite stock price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3837-3850.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    2. Yok-Yong Lee & M. H. Yahya & A. M. Bany-Ariffin & S. Aslam, 2018. "Leverage Effect and Switching of Market Efficiency Post Goods and Services Tax (GST) Imposition," International Business Research, Canadian Center of Science and Education, vol. 11(3), pages 162-178, March.
    3. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    4. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    5. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    6. Milionis, Alexandros E., 2007. "Efficient capital markets: A statistical definition and comments," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 607-613, March.
    7. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    8. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    9. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    10. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    11. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    13. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    14. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    15. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    16. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    17. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    18. Ramona Dumitriu & Razvan Stefanescu, 2013. "Gone Fishin’ Effects on the Bucharest Stock Exchange," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 13(1), pages 107-116.
    19. Olufemi Samuel Adegboyo & Kiran Sarwar, 2025. "Modelling and forecasting of Nigeria stock market volatility," Future Business Journal, Springer, vol. 11(1), pages 1-13, December.
    20. Nicolau, Juan Luis & Sharma, Abhinav, 2022. "A review of research into drivers of firm value through event studies in tourism and hospitality: Launching the Annals of Tourism Research curated collection on drivers of firm value through event stu," Annals of Tourism Research, Elsevier, vol. 95(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:5:d:10.1007_s13198-025-02759-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.