An integrated approach on new product development process with data mining: a case study on smartphone design
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-025-02763-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- He, Wu & Zha, Shenghua & Li, Ling, 2013. "Social media competitive analysis and text mining: A case study in the pizza industry," International Journal of Information Management, Elsevier, vol. 33(3), pages 464-472.
- Aron Culotta & Jennifer Cutler, 2016. "Mining Brand Perceptions from Twitter Social Networks," Marketing Science, INFORMS, vol. 35(3), pages 343-362, May.
- Alexandra Rese & Alexander Sänn & Felix Homfeldt, 2015. "Customer integration and voice-of-customer methods in the German automotive industry," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 15(1), pages 1-19.
- Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
- Yuanzhu Zhan & Kim Hua Tan & Yina Li & Ying Kei Tse, 2018. "Unlocking the power of big data in new product development," Annals of Operations Research, Springer, vol. 270(1), pages 577-595, November.
- Andreea-Maria Copaceanu, 2021. "Sentiment Analysis Using Machine Learning Approach," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 261-270, August.
- Ming Li & Jie Zhang, 2021. "Integrating Kano Model, AHP, and QFD Methods for New Product Development Based on Text Mining, Intuitionistic Fuzzy Sets, and Customers Satisfaction," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luis Pilacuan-Bonete & Purificación Galindo-Villardón & Francisco Delgado-Álvarez, 2022. "HJ-Biplot as a Tool to Give an Extra Analytical Boost for the Latent Dirichlet Assignment (LDA) Model: With an Application to Digital News Analysis about COVID-19," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
- Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
- Curci, Ylenia & Mongeau Ospina, Christian A., 2016.
"Investigating biofuels through network analysis,"
Energy Policy, Elsevier, vol. 97(C), pages 60-72.
- Ylenia Curci & Christian Mongeau Ospina, 2016. "Investigating biofuels through network analysis," Post-Print hal-01725383, HAL.
- Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
- Pietro Fera & Nicola Moscariello & Gianmarco Salzillo & Emilio Farina, 2025. "Towards the Regulation of Non‐Financial Reporting: The Impact on Environmental Disclosure Within the Oil and Gas Sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 32(3), pages 4053-4067, May.
- Yulin Chen, 2023. "Comparing content marketing strategies of digital brands using machine learning," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
- Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
- Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
- Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
- Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
- repec:osf:socarx:49qxk_v1 is not listed on IDEAS
- Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
- Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
- Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
- Xuan Gong & Yunchan Zhu & Rizwan Ali & Ruijin Guo, 2019. "Capturing Associations and Sustainable Competitiveness of Brands from Social Tags," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
- Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
- repec:osf:socarx:8jbvg_v1 is not listed on IDEAS
- Taiwen Feng & Hongyan Sheng, 2023. "Identifying the equifinal configurations of prompting green supply chain integration and subsequent performance outcome," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5234-5251, December.
- Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
- Marcin Chlebus & Maciej Stefan Świtała, 2020. "So close and so far. Finding similar tendencies in econometrics and machine learning papers. Topic models comparison," Working Papers 2020-16, Faculty of Economic Sciences, University of Warsaw.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:4:d:10.1007_s13198-025-02763-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.