IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i4d10.1007_s13198-025-02763-y.html
   My bibliography  Save this article

An integrated approach on new product development process with data mining: a case study on smartphone design

Author

Listed:
  • Cihan Sahin

    (Ulak Communication Inc.)

  • Ilker Murat Ar

    (Ministry of Industry and Technology)

  • Birdogan Baki

    (Karadeniz Technical University)

Abstract

The New Product Development (NPD) process integrates data from various sources, with a primary focus on customer inputs. This study introduces a novel integrated approach that enhances the NPD process by systematically incorporating customer needs. Specifically, the approach extracts customer needs from social media data, integrates data mining techniques into the House of Quality (HoQ), and provides actionable recommendations for smartphone design improvements. The proposed methodology encompasses four stages: attribute extraction, review classification, transformation, and attribute deployment. Initially, X data is collected and analyzed using Latent Dirichlet Allocation for attribute extraction. Subsequently, customer reviews are classified using machine learning algorithms. The sentiment analysis scores are then transformed into Kano model parameters to inform Quality Function Deployment. Finally, the identified attributes are applied to smartphone design through the HoQ framework. The findings reveal that customer requirements, their significance, and competitive analyses can be effectively incorporated into the NPD process through the integration of data mining techniques. Notably, the study identifies security as the most critical attribute for smartphone design, with the sense of quality emerging as the foremost customer requirement. This integrated approach offers valuable insights for design managers, serving as a decision support system to guide new product design and development. The novelty of this study lies in its systematic combination of data mining methods with traditional NPD methodologies, offering a comprehensive framework for enhancing product design based on real-time customer feedback.

Suggested Citation

  • Cihan Sahin & Ilker Murat Ar & Birdogan Baki, 2025. "An integrated approach on new product development process with data mining: a case study on smartphone design," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(4), pages 1485-1500, April.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:4:d:10.1007_s13198-025-02763-y
    DOI: 10.1007/s13198-025-02763-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02763-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02763-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yuanzhu Zhan & Kim Hua Tan & Yina Li & Ying Kei Tse, 2018. "Unlocking the power of big data in new product development," Annals of Operations Research, Springer, vol. 270(1), pages 577-595, November.
    2. He, Wu & Zha, Shenghua & Li, Ling, 2013. "Social media competitive analysis and text mining: A case study in the pizza industry," International Journal of Information Management, Elsevier, vol. 33(3), pages 464-472.
    3. Ming Li & Jie Zhang, 2021. "Integrating Kano Model, AHP, and QFD Methods for New Product Development Based on Text Mining, Intuitionistic Fuzzy Sets, and Customers Satisfaction," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, March.
    4. Andreea-Maria Copaceanu, 2021. "Sentiment Analysis Using Machine Learning Approach," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 261-270, August.
    5. Aron Culotta & Jennifer Cutler, 2016. "Mining Brand Perceptions from Twitter Social Networks," Marketing Science, INFORMS, vol. 35(3), pages 343-362, May.
    6. Alexandra Rese & Alexander Sänn & Felix Homfeldt, 2015. "Customer integration and voice-of-customer methods in the German automotive industry," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 15(1), pages 1-19.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    2. Luis Pilacuan-Bonete & Purificación Galindo-Villardón & Francisco Delgado-Álvarez, 2022. "HJ-Biplot as a Tool to Give an Extra Analytical Boost for the Latent Dirichlet Assignment (LDA) Model: With an Application to Digital News Analysis about COVID-19," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    3. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    4. Ca' Zorzi, Michele & Manu, Ana-Simona & Lopardo, Gianluigi, 2025. "Verba volant, transcripta manent: what corporate earnings calls reveal about the AI stock rally," Working Paper Series 3093, European Central Bank.
    5. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    6. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    7. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    8. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Pietro Fera & Nicola Moscariello & Gianmarco Salzillo & Emilio Farina, 2025. "Towards the Regulation of Non‐Financial Reporting: The Impact on Environmental Disclosure Within the Oil and Gas Sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 32(3), pages 4053-4067, May.
    10. Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
    11. Yulin Chen, 2023. "Comparing content marketing strategies of digital brands using machine learning," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    12. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    13. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    14. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    15. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    16. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    17. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    18. repec:osf:socarx:49qxk_v1 is not listed on IDEAS
    19. Haiyun, Cui & Zhixiong, Huang & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Peris Gitau & Joseph Munyau & Jimnah Waweru, 2017. "An Evaluation Of Social Media As Strategy For Enhancing Competitiveness Among Selected Small Medium Enterprises In Nairobi County, Kenya," European Journal of Business and Strategic Management, International Peer Review Journals and Books, vol. 2(5), pages 16-31.
    21. Ashish Kumar Rathore & Santanu Das & P. Vigneswara Ilavarasan, 2018. "Social Media Data Inputs in Product Design: Case of a Smartphone," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(3), pages 255-272, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:4:d:10.1007_s13198-025-02763-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.