IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i3d10.1007_s13198-023-02209-3.html
   My bibliography  Save this article

Energy consumption prediction of a smart home using non-intrusive appliance load monitoring

Author

Listed:
  • Lazhar Chabane

    (University of 8 Mai 1945 Geulma
    University of Batna 2)

  • Said Drid

    (University of Batna 2
    Higher National School of Renewable Energy, Environment and Sustainable Development)

  • Larbi Chrifi-Alaoui

    (University of Picardie Jules Verne, IUT de l’Aisne)

  • Laurant Delahoche

    (University of Picardie Jules Verne, IUT de l’Aisne)

Abstract

The increasing need for energy has been a major problem in recent years. In view of this problem, energy saving and reduction of energy consumption are strongly encouraged. The residential sector accounts an important part of final energy consumption and is therefore a major challenge for improving energy efficiency. In this work, individual energy consumption is determined from measurements taken downstream at the energy meter using a single current and a single voltage sensor, without a learning phase or knowledge of the equipment inside the home. This non-intrusive appliance load monitoring (NIALM) method has several advantages: it allows us to process the load curves and to extract useful information for the identification of the uses and to prevent the most energy consuming appliances. In addition, we will apply the Auto Regressive Moving Average with eXternal inputs (ARMAX) model to predict the energy consumption. These two approaches will allow us to better analyze the management, control, metering and billing system of consumption in order to ensure better energy efficiency in buildings.

Suggested Citation

  • Lazhar Chabane & Said Drid & Larbi Chrifi-Alaoui & Laurant Delahoche, 2024. "Energy consumption prediction of a smart home using non-intrusive appliance load monitoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(3), pages 1231-1244, March.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02209-3
    DOI: 10.1007/s13198-023-02209-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02209-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02209-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baillie, Richard T., 1980. "Predictions from ARMAX models," Journal of Econometrics, Elsevier, vol. 12(3), pages 365-374, April.
    2. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    2. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    3. Yan Ren & Haonan Zhang & Lile Wu & Kai Zhang & Zutian Cheng & Ketao Sun & Yuan Sun & Leiming Hu, 2025. "Research on the Health Evaluation of a Pump Turbine in Smoothing Output Volatility of the Hybrid System Under a High Proportion of Wind and Photovoltaic Power Connection," Energies, MDPI, vol. 18(5), pages 1-30, March.
    4. Llewellyn, Mary & Ross, Gordon & Ryan-Saha, Joshua, 2023. "COVID-era forecasting: Google trends and window and model averaging," Annals of Tourism Research, Elsevier, vol. 103(C).
    5. Miaomiao Niu & Guohao Li, 2022. "The Impact of Climate Change Risks on Residential Consumption in China: Evidence from ARMAX Modeling and Granger Causality Analysis," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
    6. Marta Baltar Moreira Areosa & Wagner Piazza Gaglianone, 2023. "Anchoring Long-term VAR Forecasts Based On Survey Data and State-space Models," Working Papers Series 574, Central Bank of Brazil, Research Department.
    7. Edi Sukamto & Dadang Gunawan, 2016. "Dynamic detection system design of fraud simbox to improve quality service of international incoming call," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 2(3), pages 77-81.
    8. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.
    9. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    10. Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
    11. Baillie, Richard T. & Kongcharoen, Chaleampong & Kapetanios, George, 2012. "Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures," International Journal of Forecasting, Elsevier, vol. 28(1), pages 46-53.
    12. Abdelmonaem Jornaz & V. A. Samaranayake, 2019. "A Multi-Step Approach to Modeling the 24-hour Daily Profiles of Electricity Load using Daily Splines," Energies, MDPI, vol. 12(21), pages 1-22, November.
    13. Hlouskova, Jaroslava & Schmidheiny, Kurt & Wagner, Martin, 2009. "Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 330-336, March.
    14. Julio Manuel de Luis-Ruiz & Benito Ramiro Salas-Menocal & Raúl Pereda-García & Rubén Pérez-Álvarez & Javier Sedano-Cibrián & Carolina Ruiz-Fernández, 2024. "Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis," Sustainability, MDPI, vol. 16(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02209-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.