IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1306-d1606837.html
   My bibliography  Save this article

Research on the Health Evaluation of a Pump Turbine in Smoothing Output Volatility of the Hybrid System Under a High Proportion of Wind and Photovoltaic Power Connection

Author

Listed:
  • Yan Ren

    (School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Haonan Zhang

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Lile Wu

    (School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
    School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Power China Henan Electric Power Survey & Design Institute Co., Ltd., Zhengzhou 450007, China)

  • Kai Zhang

    (Henan Rural Industry Development Service Center, Zhengzhou 450002, China)

  • Zutian Cheng

    (Power China Henan Electric Power Survey & Design Institute Co., Ltd., Zhengzhou 450007, China)

  • Ketao Sun

    (School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Yuan Sun

    (Hunan Heimifeng Pumped Storage Co., Ltd., Changsha 410219, China)

  • Leiming Hu

    (Jiangxi Hongping Pumped Storage Co., Ltd., Yichun 330603, China)

Abstract

With the high proportion of wind and photovoltaic (PV) power connection in the new electricity system, the system output power volatility is enhanced. When the output fluctuation of the system is suppressed, the pumped storage condition is changed frequently, which leads to the vibration enhancement of the unit and a decrease in the system safety. This paper proposes a pump turbine health evaluation model based on the combination of a weighting method and cloud model in a high proportion wind and PV power connection scenario. The wind–PV output characteristics of the complementary system in a year (8760 h) and a typical week in four seasons (168 h) are analyzed, and the characteristics of frequent working condition transitions of pumped storage units are studied against this background. A five-level health classification system including multi-dimensional evaluation indicators is established, and a multi-level health evaluation based on cloud membership quantification is realized by combining the weighting method and cloud model method. The case analysis of a pumped storage power station within a new electricity system shows that the system as a whole presents typical cloud characteristics (Ex = 76.411, En = 12.071, He = 4.014), and the membership degree in the “good” state reaches 0.772. However, the draft tube index (Ex = 62.476) and the water guide index (Ex = 50.333) have shown a deterioration trend. The results verify the applicability and reliability of the evaluation model. This study provides strong support for the safe and stable operation of pumped storage units in the context of the high-proportion wind and PV power connection, which is of great significance for the smooth operation of the new electricity system.

Suggested Citation

  • Yan Ren & Haonan Zhang & Lile Wu & Kai Zhang & Zutian Cheng & Ketao Sun & Yuan Sun & Leiming Hu, 2025. "Research on the Health Evaluation of a Pump Turbine in Smoothing Output Volatility of the Hybrid System Under a High Proportion of Wind and Photovoltaic Power Connection," Energies, MDPI, vol. 18(5), pages 1-30, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1306-:d:1606837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    2. Yao-Na Li & Zhi-Hua Hu, 2024. "A tri-system urban waterlogging risk assessment framework based on GIS- game theory combination weight: a case of Zhengzhou City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14649-14681, December.
    3. Shuming Zhang & Hong Zhou, 2024. "Transformer Fault Diagnosis Based on Multi-Strategy Enhanced Dung Beetle Algorithm and Optimized SVM," Energies, MDPI, vol. 17(24), pages 1-15, December.
    4. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    5. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2024. "A training-free non-intrusive air conditioning load monitoring method based on fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 376(PA).
    6. Liu, Donglei & Wang, Shunli & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2024. "An optimized multi-segment long short-term memory network strategy for power lithium-ion battery state of charge estimation adaptive wide temperatures," Energy, Elsevier, vol. 304(C).
    7. Ahadi, Pedram & Fakhrabadi, Farbod & Pourshaghaghy, Alireza & Kowsary, Farshad, 2023. "Optimal site selection for a solar power plant in Iran via the Analytic Hierarchy Process (AHP)," Renewable Energy, Elsevier, vol. 215(C).
    8. Ren, Yan & Sun, Ketao & Zhang, Kai & Han, Yuping & Zhang, Haonan & Wang, Meijing & Jing, Xiang & Mo, Juhua & Zou, Wenhang & Xing, Xinyang, 2024. "Optimization of the capacity configuration of an abandoned mine pumped storage/wind/photovoltaic integrated system," Applied Energy, Elsevier, vol. 374(C).
    9. Marko Šostar & Vladimir Ristanović, 2023. "Assessment of Influencing Factors on Consumer Behavior Using the AHP Model," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    10. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    2. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    3. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Liu, Zixi & Ruan, Guanqiang & Tian, Yupeng & Hu, Xing & Yan, Rong & Yang, Kuo, 2024. "A real-world battery state of charge prediction method based on a lightweight mixer architecture," Energy, Elsevier, vol. 311(C).
    5. Yilmaz, İsmail & Kocer, Abdulkadir & Aksoy, Ercument, 2024. "Site selection for solar power plants using GIS and fuzzy analytic hierarchy process: Case study of the western mediterranean region of Turkiye," Renewable Energy, Elsevier, vol. 237(PC).
    6. Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Marko Å ostar & Ines Å koko, 2024. "Unpacking the Complexities of Energy Renovation Programs for Family Houses: Case Study of Croatia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 12-25, July.
    9. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    10. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    11. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    12. Shehab, Zakariya Nafi' & Faisal, Raid Mahmood & Ahmed, Safwa Waleed, 2024. "Multi-criteria decision making (MCDM) approach for identifying optimal solar farm locations: A multi-technique comparative analysis," Renewable Energy, Elsevier, vol. 237(PC).
    13. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    14. González-Garrido, A. & Gaztañaga, H. & Saez-de-Ibarra, A. & Milo, A. & Eguia, P., 2020. "Electricity and reserve market bidding strategy including sizing evaluation and a novel renewable complementarity-based centralized control for storage lifetime enhancement," Applied Energy, Elsevier, vol. 262(C).
    15. Zhang, Xinshuo & Huang, Weibin & Chen, Shijun & Xie, Diya & Liu, Dexu & Ma, Guangwen, 2020. "Grid–source coordinated dispatching based on heterogeneous energy hybrid power generation," Energy, Elsevier, vol. 205(C).
    16. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    17. Bi, Sheng & Li, Chengjiang & Zhang, Wei & Xu, Guoteng & Wang, Honglei & Hu, Yu-Jie & Chen, Che & Wang, Sheng, 2024. "The prospect of methanol-fuel heating in northern China," Renewable Energy, Elsevier, vol. 237(PB).
    18. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    20. Graabak, I. & Korpås, M. & Jaehnert, S. & Belsnes, M., 2019. "Balancing future variable wind and solar power production in Central-West Europe with Norwegian hydropower," Energy, Elsevier, vol. 168(C), pages 870-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1306-:d:1606837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.