IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i1d10.1007_s13198-019-00932-4.html
   My bibliography  Save this article

Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study)

Author

Listed:
  • Alireza Karimi

    (Urmia University of Technology (UUT))

  • Saeed Jafarzadeh-Ghoushchi

    (Urmia University of Technology (UUT))

  • M. A. Mohtadi-Bonab

    (University of Bonab)

Abstract

Evaluation of a supply chain is one of the most important measures for each organization. In the meantime, the simultaneous improvement approach of the economic, social and environmental performance in the field of supply chain management has attracted many researchers in recent decades. One of the suitable methods for this type of evaluation is the use of data envelopment analysis models. In the present article, the supply chain of Shoa Company has been evaluated on four levels: glass supply unit, profile supply unit, window manufacturing unit and installation unit. The company evaluation has been carried out for 18 different provinces of Iran and in total with 15 different economic, social and environmental criteria in two phases. In the first phase, the efficiency is obtained for each unit of the supply chain of the company separately based on the three aspects of sustainability, using the data envelopment analysis models; and, in the second phase, the efficiency obtained in the first phase was used as the new model ideals. The new model, which is a combination of the data envelopment analysis approach and the ideal planning, is the overall assessment of the company’s supply chain for the Shoa Co. based on sustainability criteria. The purpose of this study was to provide a comprehensive model for evaluating all parts of the supply chain of organizations with all aspects of sustainability.

Suggested Citation

  • Alireza Karimi & Saeed Jafarzadeh-Ghoushchi & M. A. Mohtadi-Bonab, 2020. "Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 140-154, February.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:1:d:10.1007_s13198-019-00932-4
    DOI: 10.1007/s13198-019-00932-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00932-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00932-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Ageron & A. Gunasekaran & A. Spalanzani, 2012. "Sustainable supply management : an empirical study," Post-Print halshs-00740499, HAL.
    2. Reza Farzipoor Saen, 2009. "A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors," Annals of Operations Research, Springer, vol. 172(1), pages 177-192, November.
    3. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    4. Wai Peng Wong & Wikrom Jaruphongsa & Loo Hay Lee, 2008. "Supply chain performance measurement system: a Monte Carlo DEA-based approach," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 3(2), pages 162-188.
    5. Hassini, Elkafi & Surti, Chirag & Searcy, Cory, 2012. "A literature review and a case study of sustainable supply chains with a focus on metrics," International Journal of Production Economics, Elsevier, vol. 140(1), pages 69-82.
    6. Khalili, M. & Camanho, A.S. & Portela, M.C.A.S. & Alirezaee, M.R., 2010. "The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs," European Journal of Operational Research, Elsevier, vol. 203(3), pages 761-770, June.
    7. Ageron, Blandine & Gunasekaran, Angappa & Spalanzani, Alain, 2012. "Sustainable supply management: An empirical study," International Journal of Production Economics, Elsevier, vol. 140(1), pages 168-182.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Erol, Ismail & Sencer, Safiye & Sari, Ramazan, 2011. "A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain," Ecological Economics, Elsevier, vol. 70(6), pages 1088-1100, April.
    10. Majid Azadi & Reza Farzipoor Saen & Madjid Tavana, 2012. "Supplier selection using chance-constrained data envelopment analysis with non-discretionary factors and stochastic data," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 167-196.
    11. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    12. Mahdiloo, Mahdi & Saen, Reza Farzipoor & Lee, Ki-Hoon, 2015. "Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 279-289.
    13. Thomas Dyllick & Kai Hockerts, 2002. "Beyond the business case for corporate sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 11(2), pages 130-141, March.
    14. Marco Marconi & Eugenia Marilungo & Alessandra Papetti & Michele Germani, 2017. "Traceability as a means to investigate supply chain sustainability: the real case of a leather shoe supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6638-6652, November.
    15. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    16. Bai, Chunguang & Sarkis, Joseph, 2010. "Integrating sustainability into supplier selection with grey system and rough set methodologies," International Journal of Production Economics, Elsevier, vol. 124(1), pages 252-264, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Izadikhah & Reza Farzipoor Saen & Razieh Roostaee, 2018. "How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis?," Annals of Operations Research, Springer, vol. 269(1), pages 241-267, October.
    2. Mohammad Izadikhah & Reza Farzipoor Saen, 2020. "Ranking sustainable suppliers by context-dependent data envelopment analysis," Annals of Operations Research, Springer, vol. 293(2), pages 607-637, October.
    3. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    4. A. Mohammed, 2020. "Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach," Annals of Operations Research, Springer, vol. 293(2), pages 639-668, October.
    5. Mohammad Izadikhah & Reza Farzipoor Saen, 2023. "Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry," Annals of Operations Research, Springer, vol. 322(1), pages 195-215, March.
    6. Monireh Jahani Sayyad Noveiri & Sohrab Kordrostami & Alireza Amirteimoori, 2022. "Performance analysis of sustainable supply networks with bounded, discrete, and joint factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 238-270, January.
    7. Weihua Liu & Enze Bai & Liwei Liu & Wanying Wei, 2017. "A Framework of Sustainable Service Supply Chain Management: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 9(3), pages 1-25, March.
    8. Luthra, Sunil & Garg, Dixit & Haleem, Abid, 2015. "An analysis of interactions among critical success factors to implement green supply chain management towards sustainability: An Indian perspective," Resources Policy, Elsevier, vol. 46(P1), pages 37-50.
    9. Schöll, Michaela, 2017. "Three Essays on Sustainable Supply Chain Management – Towards Sustainable Supplier Selection and Sustainable Sourcing," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 172463, January.
    10. Ruifeng Gong & Jian Xue & Laijun Zhao & Oleksandra Zolotova & Xiaoqing Ji & Yan Xu, 2019. "A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    11. Dongwook Kim & Sungbum Kim, 2017. "Sustainable Supply Chain Based on News Articles and Sustainability Reports: Text Mining with Leximancer and DICTION," Sustainability, MDPI, vol. 9(6), pages 1-44, June.
    12. Suthep Nimsai & Chanin Yoopetch & Polin Lai, 2020. "Mapping the Knowledge Base of Sustainable Supply Chain Management: A Bibliometric Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    13. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    14. Jiuping Xu & Xianglan Jiang & Zhibin Wu, 2016. "A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    15. Mastrocinque, Ernesto & Ramírez, F. Javier & Honrubia-Escribano, Andrés & Pham, Duc T., 2022. "Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    16. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    17. Susana Garrido Azevedo & Helena Carvalho & Luís M. Ferreira & João C. O. Matias, 2017. "A proposed framework to assess upstream supply chain sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2253-2273, December.
    18. María-José Verdecho & Faustino Alarcón-Valero & David Pérez-Perales & Juan-José Alfaro-Saiz & Raúl Rodríguez-Rodríguez, 2021. "A methodology to select suppliers to increase sustainability within supply chains," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1231-1251, December.
    19. Margherita Pero & Antonella Moretto & Eleonora Bottani & Barbara Bigliardi, 2017. "Environmental Collaboration for Sustainability in the Construction Industry: An Exploratory Study in Italy," Sustainability, MDPI, vol. 9(1), pages 1-25, January.
    20. Liu, Qian & Zheng, Lucy, 2016. "Assessing the economic performance of an environmental sustainable supply chain in reducing environmental externalitiesAuthor-Name: Ding, Huiping," European Journal of Operational Research, Elsevier, vol. 255(2), pages 463-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:1:d:10.1007_s13198-019-00932-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.