IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v32y2023i6d10.1007_s10726-023-09851-z.html
   My bibliography  Save this article

A Linguistic Cloud-Based Consensus Framework with Three Behavior Classifications Under Trust-Interest Relations

Author

Listed:
  • Weiqiao Liu

    (Nanjing University of Aeronautics and Astronautics
    Shandong University of Finance and Economics)

  • Jianjun Zhu

    (Nanjing University of Aeronautics and Astronautics)

  • Peide Liu

    (Shandong University of Finance and Economics)

  • Peng Wang

    (Shandong University of Finance and Economics)

  • Wen Song

    (Nanjing University of Science and Technology)

Abstract

In the consensus reaching process (CRP), experts are not infinitely compromising when adjusting opinions, and the “compromise limit” is used to reflect the limited compromise behaviors in the process of expert opinion adjustment. In complex and multiple social relations, experts tend to exhibit different behaviors according to their compromise limits. This paper aims to develop a novel CRP framework to promote a consensus that categorizes and manages experts based on their compromise limits. Firstly, the trust-interest network is defined to represent the multiple relations among experts, and the expert weights are calculated by considering the impact of interest manipulation on trust relations. Secondly, a novel cloud model-based minimum cost consensus model is established, which considers the mutual acceptance between the experts and the group, as well as the changes in the ranges of experts’ hesitation and the collective acceptance. Thirdly, three behavior classifications are defined based on individual compromise limits and group acceptance ranges: cooperative behavior, hesitating non-cooperative behavior, and strong non-cooperative behavior, and a CRP optimization model is constructed to manage the three behaviors. Finally, a numerical example is given to illustrate the validity and superiority of the proposed model.

Suggested Citation

  • Weiqiao Liu & Jianjun Zhu & Peide Liu & Peng Wang & Wen Song, 2023. "A Linguistic Cloud-Based Consensus Framework with Three Behavior Classifications Under Trust-Interest Relations," Group Decision and Negotiation, Springer, vol. 32(6), pages 1497-1533, December.
  • Handle: RePEc:spr:grdene:v:32:y:2023:i:6:d:10.1007_s10726-023-09851-z
    DOI: 10.1007/s10726-023-09851-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-023-09851-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-023-09851-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Farzad & Safari, Amin & Farrokhifar, Meisam, 2020. "Cloud theory-based multi-objective feeder reconfiguration problem considering wind power uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 1130-1139.
    2. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    3. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    5. Williamson, Oliver E, 1993. "Calculativeness, Trust, and Economic Organization," Journal of Law and Economics, University of Chicago Press, vol. 36(1), pages 453-486, April.
    6. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    7. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    8. Carl T. Bergstrom & Joseph B. Bak-Coleman, 2019. "Information gerrymandering in social networks skews collective decision-making," Nature, Nature, vol. 573(7772), pages 40-41, September.
    9. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    10. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    11. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    12. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    13. Alexander J. Stewart & Mohsen Mosleh & Marina Diakonova & Antonio A. Arechar & David G. Rand & Joshua B. Plotkin, 2019. "Information gerrymandering and undemocratic decisions," Nature, Nature, vol. 573(7772), pages 117-121, September.
    14. Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    2. Meng, Fan-Yong & Zhao, Deng-Yu & Gong, Zai-Wu & Chu, Jun-Fei & Pedrycz, Witold & Yuan, Zhe, 2024. "Consensus adjustment for multi-attribute group decision making based on cross-allocation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 200-216.
    3. Shen, Yufeng & Ma, Xueling & Kou, Gang & Rodríguez, Rosa M. & Zhan, Jianming, 2025. "Consensus methods with Nash and Kalai–Smorodinsky bargaining game for large-scale group decision-making," European Journal of Operational Research, Elsevier, vol. 321(3), pages 865-883.
    4. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    5. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    6. Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
    7. Tiantian Gai & Mingshuo Cao & Francisco Chiclana & Zhen Zhang & Yucheng Dong & Enrique Herrera-Viedma & Jian Wu, 2023. "Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making," Group Decision and Negotiation, Springer, vol. 32(1), pages 45-74, February.
    8. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    9. Luo, Shucheng & Xu, Zeshui & Zhu, Bin, 2024. "A bilateral deliberation mechanism for conflict resolving with multi-actor and multi-criteria," European Journal of Operational Research, Elsevier, vol. 319(1), pages 234-245.
    10. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    11. Choi, Tsan-Ming & Chen, Yue, 2021. "Circular supply chain management with large scale group decision making in the big data era: The macro-micro model," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    13. Peng Wu & Jinpei Liu & Ligang Zhou & Huayou Chen, 2022. "An Integrated Group Decision-Making Method with Hesitant Qualitative Information Based on DEA Cross-Efficiency and Priority Aggregation for Evaluating Factors Affecting a Resilient City," Group Decision and Negotiation, Springer, vol. 31(2), pages 293-316, April.
    14. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    15. Xiao Tan & Jianjun Zhu & Tong Wu, 2022. "Dynamic Reference Point-Oriented Consensus Mechanism in Linguistic Distribution Group Decision Making Restricted by Quantum Integration of Information," Group Decision and Negotiation, Springer, vol. 31(2), pages 491-528, April.
    16. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    17. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    18. Tong, Huagang & Zhu, Jianjun, 2023. "A parallel approach with the strategy-proof mechanism for large-scale group decision making: An application in industrial internet," European Journal of Operational Research, Elsevier, vol. 311(1), pages 173-195.
    19. Meng, Fanyong & Tang, Jie & An, Qingxian, 2023. "Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making," Omega, Elsevier, vol. 117(C).
    20. Mi Zhou & Xin-Yu Fan & Ba-Yi Cheng & Jian Wu, 2024. "Remanufacturing Mode Selection Based on Non-cooperative Behavior Management in Group Consensus Reaching Process," Group Decision and Negotiation, Springer, vol. 33(5), pages 1191-1246, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:32:y:2023:i:6:d:10.1007_s10726-023-09851-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.