IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v104y2021ics0305048321001006.html
   My bibliography  Save this article

Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction

Author

Listed:
  • Gong, Zaiwu
  • Guo, Weiwei
  • Słowiński, Roman

Abstract

Consensus is an essential issue in group decision making (GDM) research, since inability to reach a consensus may lead to a costly decision paralysis. Generally, in real GDM scenarios, some interaction between decision makers (DMs) is effective at promoting consensus. The Choquet integral is a proper mathematical tool for integrating information while considering both interaction and fusion. This is why in this paper, we apply the Choquet integral to model a transaction and interaction behavior-based consensus. In the proposed model, we define the weights and interaction indices of DMs in an interactive environment to avoid extreme discourse weights. Subsequently, we apply the optimal consensus model to the trade of discourse weights in carbon emission reduction. Simultaneously, we consider the inter-group transactions between discourse weights and individual weight restriction behaviors. A case study with weight transfers reveals that, compared to the traditional consensus optimization model with minimum costs, the proposed novel transaction and interaction behavior-based consensus model has a broader scope of application. It not only reflects the fairness of the consensus results, but it also achieves better decision-making results.

Suggested Citation

  • Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
  • Handle: RePEc:eee:jomega:v:104:y:2021:i:c:s0305048321001006
    DOI: 10.1016/j.omega.2021.102491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    2. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    3. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    4. Hou, Fujun & Triantaphyllou, Evangelos, 2019. "An iterative approach for achieving consensus when ranking a finite set of alternatives by a group of experts," European Journal of Operational Research, Elsevier, vol. 275(2), pages 570-579.
    5. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    6. Pereira, Miguel Alves & Figueira, José Rui & Marques, Rui Cunha, 2020. "Using a Choquet integral-based approach for incorporating decision-maker’s preference judgments in a Data Envelopment Analysis model," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1016-1030.
    7. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    8. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    9. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    10. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    11. Boujelben, Mohamed Ayman, 2017. "A unicriterion analysis based on the PROMETHEE principles for multicriteria ordered clustering," Omega, Elsevier, vol. 69(C), pages 126-140.
    12. Kacprzyk, Janusz & Fedrizzi, Mario, 1989. "A `human-consistent' degree of consensus based on fuzzy login with linguistic quantifiers," Mathematical Social Sciences, Elsevier, vol. 18(3), pages 275-290, December.
    13. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    14. Tang, Ming & Liao, Huchang & Mi, Xiaomei & Lev, Benjamin & Pedrycz, Witold, 2021. "A hierarchical consensus reaching process for group decision making with noncooperative behaviors," European Journal of Operational Research, Elsevier, vol. 293(2), pages 632-642.
    15. Marichal, Jean-Luc & Roubens, Marc, 2000. "Determination of weights of interacting criteria from a reference set," European Journal of Operational Research, Elsevier, vol. 124(3), pages 641-650, August.
    16. Gong, Zaiwu & Xu, Xiaoxia & Zhang, Huanhuan & Aytun Ozturk, U. & Herrera-Viedma, Enrique & Xu, Chao, 2015. "The consensus models with interval preference opinions and their economic interpretation," Omega, Elsevier, vol. 55(C), pages 81-90.
    17. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    18. Paul Alain Kaldjob Kaldjob & Brice Mayag & Denis Bouyssou, 2020. "Necessary and Possible Interaction Between Criteria in a General Choquet Integral Model," Post-Print hal-02877291, HAL.
    19. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    20. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    21. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    22. Chen, Kaung-Hwa & Lin, Hsin-Hui, 1998. "Interactive group decision-making: Modeling and application," Socio-Economic Planning Sciences, Elsevier, vol. 32(2), pages 113-121, June.
    23. Dorit S. Hochbaum & Asaf Levin, 2006. "Methodologies and Algorithms for Group-Rankings Decision," Management Science, INFORMS, vol. 52(9), pages 1394-1408, September.
    24. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    25. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    26. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    27. Ma, Li-Ching, 2016. "A new group ranking approach for ordinal preferences based on group maximum consensus sequences," European Journal of Operational Research, Elsevier, vol. 251(1), pages 171-181.
    28. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    29. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore & Słowiński, Roman, 2017. "A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis," Omega, Elsevier, vol. 73(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin Liu & Wenjun Chang & Xuefei Jia, 2023. "A Group Consensus Model for Multiple Attributes Group Decision Making with Interval Belief Distribution and Interval Distributed Preference Relation," Group Decision and Negotiation, Springer, vol. 32(3), pages 701-727, June.
    2. Tiantian Gai & Mingshuo Cao & Francisco Chiclana & Zhen Zhang & Yucheng Dong & Enrique Herrera-Viedma & Jian Wu, 2023. "Consensus-trust Driven Bidirectional Feedback Mechanism for Improving Consensus in Social Network Large-group Decision Making," Group Decision and Negotiation, Springer, vol. 32(1), pages 45-74, February.
    3. József Dombi & Jenő Fáró & Tamás Jónás, 2023. "A Fuzzy Entropy-Based Group Consensus Measure for Financial Investments," Mathematics, MDPI, vol. 12(1), pages 1-18, December.
    4. Erti Jiaduo & Md. Golam Kibria & Nazhat Nury Aspy & Ehsan Ullah & Md. Emran Hossain, 2023. "The Impact of Agricultural Employment and Technological Innovation on the Environment: Evidence from BRICS Nations Considering a Novel Environmental Sustainability Indicator," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    5. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    6. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    7. Wenfeng Zhu & Hengjie Zhang & Jing Xiao, 2023. "Coming to Consensus on Classification in Flexible Linguistic Preference Relations: The Role of Personalized Individual Semantics," Group Decision and Negotiation, Springer, vol. 32(5), pages 1237-1271, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    2. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    3. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    4. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    5. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    6. Du, Junliang & Liu, Sifeng & Liu, Yong, 2022. "A limited cost consensus approach with fairness concern and its application," European Journal of Operational Research, Elsevier, vol. 298(1), pages 261-275.
    7. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    8. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    9. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    10. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    11. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    12. Li, Yanhong & Kou, Gang & Li, Guangxu & Peng, Yi, 2022. "Consensus reaching process in large-scale group decision making based on bounded confidence and social network," European Journal of Operational Research, Elsevier, vol. 303(2), pages 790-802.
    13. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    14. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    15. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    16. Wenjun Chang & Chao Fu & Nanping Feng & Shanlin Yang, 2021. "Multi-criteria Group Decision Making with Various Ordinal Assessments," Group Decision and Negotiation, Springer, vol. 30(6), pages 1285-1314, December.
    17. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    19. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:104:y:2021:i:c:s0305048321001006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.