IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v70y2017icp94-117.html
   My bibliography  Save this article

On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective

Author

Listed:
  • Yan, Hong-Bin
  • Ma, Tieju
  • Huynh, Van-Nam

Abstract

This paper focuses on qualitative multi-attribute group decision making (MAGDM) with linguistic information in terms of single linguistic terms and/or flexible linguistic expressions. To do so, we propose a new linguistic decision rule based on the concepts of random preference and stochastic dominance, by a probability based interpretation of weight information. The importance weights and the concept of fuzzy majority are incorporated into both the multi-attribute and collective decision rule by the so-called weighted ordered weighted averaging operator with the input parameters expressed as probability distributions over a linguistic term set. Moreover, a probability based method is proposed to measure the consensus degree between individual and collective overall random preferences based on the concept of stochastic dominance, which also takes both the importance weights and the fuzzy majority into account. As such, our proposed approaches are based on the ordinal semantics of linguistic terms and voting statistics. By this, on one hand, the strict constraint of the uniform linguistic term set in linguistic decision making can be released; on the other hand, the difference and variation of individual opinions can be captured. The proposed approaches can deal with qualitative MAGDM with single linguistic terms and flexible linguistic expressions. Two application examples taken from the literature are used to illuminate the proposed techniques by comparisons with existing studies. The results show that our proposed approaches are comparable with existing studies.

Suggested Citation

  • Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
  • Handle: RePEc:eee:jomega:v:70:y:2017:i:c:p:94-117
    DOI: 10.1016/j.omega.2016.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831630603X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    2. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    3. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    4. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi, 2008. "On consistency measures of linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 189(2), pages 430-444, September.
    5. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    6. Yan, Hong-Bin & Ma, Tieju, 2015. "A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority," European Journal of Operational Research, Elsevier, vol. 241(3), pages 815-829.
    7. Hong-Bin Yan & Tieju Ma, 2015. "A fuzzy group decision making approach to new product concept screening at the fuzzy front end," International Journal of Production Research, Taylor & Francis Journals, vol. 53(13), pages 4021-4049, July.
    8. Loomes, Graham & Sugden, Robert, 1995. "Incorporating a stochastic element into decision theories," European Economic Review, Elsevier, vol. 39(3-4), pages 641-648, April.
    9. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    10. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    11. Hong-Bin Yan & Van-Nam Huynh & Yoshiteru Nakamori, 2012. "A group nonadditive multiattribute consumer-oriented Kansei evaluation model with an application to traditional crafts," Annals of Operations Research, Springer, vol. 195(1), pages 325-354, May.
    12. Chuu, Shian-Jong, 2011. "Interactive group decision-making using a fuzzy linguistic approach for evaluating the flexibility in a supply chain," European Journal of Operational Research, Elsevier, vol. 213(1), pages 279-289, August.
    13. Gloria Bordogna & Gabriella Pasi, 1993. "A fuzzy linguistic approach generalizing Boolean Information Retrieval: A model and its evaluation," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 44(2), pages 70-82, March.
    14. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    15. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    16. Jian-qiang Wang & Juan-juan Peng & Hong-yu Zhang & Tao Liu & Xiao-hong Chen, 2015. "An Uncertain Linguistic Multi-criteria Group Decision-Making Method Based on a Cloud Model," Group Decision and Negotiation, Springer, vol. 24(1), pages 171-192, January.
    17. Li, Zongmin & Xu, Jiuping & Lev, Benjamin & Gang, Jun, 2015. "Multi-criteria group individual research output evaluation based on context-free grammar judgments with assessing attitude," Omega, Elsevier, vol. 57(PB), pages 282-293.
    18. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    19. Wang, Shih-Yuan & Chang, Sheng-Lin & Wang, Reay-Chen, 2009. "Assessment of supplier performance based on product-development strategy by applying multi-granularity linguistic term sets," Omega, Elsevier, vol. 37(1), pages 215-226, February.
    20. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    21. Merigó, José M. & Palacios-Marqués, Daniel & Zeng, Shouzhen, 2016. "Subjective and objective information in linguistic multi-criteria group decision making," European Journal of Operational Research, Elsevier, vol. 248(2), pages 522-531.
    22. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Wenyu Yu & Zhen Zhang & Qiuyan Zhong, 2021. "Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach," Annals of Operations Research, Springer, vol. 300(2), pages 443-466, May.
    3. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    4. Montes, Ignacio & Rademaker, Michael & Pérez-Fernández, Raúl & De Baets, Bernard, 2020. "A correspondence between voting procedures and stochastic orderings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 977-987.
    5. Peide Liu & Hongyu Yang & Haiquan Wu & Meilong Ju & Fawaz E. Alsaadi, 2019. "Some Maclaurin Symmetric Mean Aggregation Operators Based on Cloud Model and Their Application to Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 981-1007, May.
    6. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    7. Lin, Xueshan & Huang, Tao & Bompard, Ettore & Wang, Beibei & Zheng, Yaxian, 2023. "Ex-ante market power evaluation and mitigation in day-ahead electricity market considering market maturity levels," Energy, Elsevier, vol. 278(C).
    8. Triantaphyllou, Evangelos & Yanase, Juri & Hou, Fujun, 2020. "Post-consensus analysis of group decision making processes by means of a graph theoretic and an association rules mining approach," Omega, Elsevier, vol. 94(C).
    9. Li, Zongmin & Zhang, Qi & Liao, Huchang, 2019. "Efficient-equitable-ecological evaluation of regional water resource coordination considering both visible and virtual water," Omega, Elsevier, vol. 83(C), pages 223-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    2. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.
    3. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    4. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    5. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    6. Wan, Shu-Ping & Li, Deng-Feng, 2013. "Fuzzy LINMAP approach to heterogeneous MADM considering comparisons of alternatives with hesitation degrees," Omega, Elsevier, vol. 41(6), pages 925-940.
    7. Zhou, Wei & Xu, Zeshui, 2016. "Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites," European Journal of Operational Research, Elsevier, vol. 254(2), pages 610-621.
    8. Gong, Zaiwu & Xu, Xiaoxia & Zhang, Huanhuan & Aytun Ozturk, U. & Herrera-Viedma, Enrique & Xu, Chao, 2015. "The consensus models with interval preference opinions and their economic interpretation," Omega, Elsevier, vol. 55(C), pages 81-90.
    9. Zhibin Wu & Jiuping Xu & Zeshui Xu, 2016. "A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers," Annals of Operations Research, Springer, vol. 247(2), pages 735-757, December.
    10. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    11. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    12. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    13. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    14. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    15. Fanyong Meng & Aiqing Zeng & Jie Tang & Witold Pedrycz, 2023. "Ranking Objects from Individual Linguistic Dual Hesitant Fuzzy Information in View of Optimal Model-Based Consistency and Consensus Iteration Algorithm," Group Decision and Negotiation, Springer, vol. 32(1), pages 5-44, February.
    16. Ahn, Byeong Seok & Park, Haechurl, 2014. "Establishing dominance between strategies with interval judgments of state probabilities," Omega, Elsevier, vol. 49(C), pages 53-59.
    17. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    18. Peide Liu & Hongyu Yang & Haiquan Wu & Meilong Ju & Fawaz E. Alsaadi, 2019. "Some Maclaurin Symmetric Mean Aggregation Operators Based on Cloud Model and Their Application to Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 981-1007, May.
    19. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    20. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:70:y:2017:i:c:p:94-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.