IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v241y2015i3p815-829.html
   My bibliography  Save this article

A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority

Author

Listed:
  • Yan, Hong-Bin
  • Ma, Tieju

Abstract

Quality function deployment (QFD) is one of the very effective customer-driven quality system tools typically applied to fulfill customer needs or requirements (CRs). It is a crucial step in QFD to derive the prioritization of design requirements (DRs) from CRs for a product. However, effective prioritization of DRs is seriously challenged due to two types of uncertainties: human subjective perception and customer heterogeneity. This paper tries to propose a novel two-stage group decision-making approach to simultaneously address the two types of uncertainties underlying QFD. The first stage is to determine the fuzzy preference relations of different DRs with respect to each customer based on the order-based semantics of linguistic information. The second stage is to determine the prioritization of DRs by synthesizing all customers’ fuzzy preference relations into an overall one by fuzzy majority. Two examples, a Chinese restaurant and a flexible manufacturing system, are used to illustrate the proposed approach. The restaurant example is also used to compare with three existing approaches. Implementation results show that the proposed approach can eliminate the burden of quantifying qualitative concepts and model customer heterogeneity and design team’s preference. Due to its easiness, our approach can reduce the cognitive burden of QFD planning team and give a practical convenience in QFD planning. Extensions to the proposed approach are also given to address application contexts involving a wider set of HOQ elements.

Suggested Citation

  • Yan, Hong-Bin & Ma, Tieju, 2015. "A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority," European Journal of Operational Research, Elsevier, vol. 241(3), pages 815-829.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:815-829
    DOI: 10.1016/j.ejor.2014.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714007383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Liang-Hsuan & Ko, Wen-Chang, 2010. "Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept," European Journal of Operational Research, Elsevier, vol. 201(2), pages 619-632, March.
    2. Chan, Lai-Kow & Wu, Ming-Lu, 2005. "A systematic approach to quality function deployment with a full illustrative example," Omega, Elsevier, vol. 33(2), pages 119-139, April.
    3. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    4. Han, Chang Hee & Kim, Jae Kyeong & Choi, Sang Hyun, 2004. "Prioritizing engineering characteristics in quality function deployment with incomplete information: A linear partial ordering approach," International Journal of Production Economics, Elsevier, vol. 91(3), pages 235-249, October.
    5. Chan, Lai-Kow & Wu, Ming-Lu, 2002. "Quality function deployment: A literature review," European Journal of Operational Research, Elsevier, vol. 143(3), pages 463-497, December.
    6. Chen, Liang-Hsuan & Weng, Ming-Chu, 2006. "An evaluation approach to engineering design in QFD processes using fuzzy goal programming models," European Journal of Operational Research, Elsevier, vol. 172(1), pages 230-248, July.
    7. V. Krishnan & Karl T. Ulrich, 2001. "Product Development Decisions: A Review of the Literature," Management Science, INFORMS, vol. 47(1), pages 1-21, January.
    8. Kim, Kwang-Jae & Moskowitz, Herbert & Dhingra, Anoop & Evans, Gerald, 2000. "Fuzzy multicriteria models for quality function deployment," European Journal of Operational Research, Elsevier, vol. 121(3), pages 504-518, March.
    9. Temponi, Cecilia & Yen, John & Amos Tiao, W., 1999. "House of quality: A fuzzy logic-based requirements analysis," European Journal of Operational Research, Elsevier, vol. 117(2), pages 340-354, September.
    10. Chen, Yizeng & Fung, Richard Y.K. & Tang, Jiafu, 2006. "Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1553-1566, November.
    11. Chin-Hung Liu & Hsin-Hung Wu, 2008. "A fuzzy group decision-making approach in quality function deployment," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(4), pages 527-540, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    2. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    3. Xiaobing Li & Zhen He, 2017. "Determining importance ratings of patients’ requirements with multi-granular linguistic evaluation information," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4110-4122, July.
    4. Yupeng Li & Zhaotong Wang & Xiaoyu Zhong & Fan Zou, 2019. "Identification of influential function modules within complex products and systems based on weighted and directed complex networks," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2375-2390, August.
    5. Peláez, José Ignacio & Bernal, Rubén, 2016. "Selective majority additive ordered weighting averaging operatorAuthor-Name: Karanik, Marcelo," European Journal of Operational Research, Elsevier, vol. 250(3), pages 816-826.
    6. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    7. Montes, Ignacio & Rademaker, Michael & Pérez-Fernández, Raúl & De Baets, Bernard, 2020. "A correspondence between voting procedures and stochastic orderings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 977-987.
    8. Qingxian An & Fanyong Meng & Beibei Xiong, 2018. "Interval cross efficiency for fully ranking decision making units using DEA/AHP approach," Annals of Operations Research, Springer, vol. 271(2), pages 297-317, December.
    9. Chen, Liang-Hsuan & Ko, Wen-Chang & Yeh, Feng-Ting, 2017. "Approach based on fuzzy goal programing and quality function deployment for new product planning," European Journal of Operational Research, Elsevier, vol. 259(2), pages 654-663.
    10. Hong-Bin Yan & Tieju Ma & Songsak Sriboonchitta & Van-Nam Huynh, 2017. "A stochastic dominance based approach to consumer-oriented Kansei evaluation with multiple priorities," Annals of Operations Research, Springer, vol. 256(2), pages 329-357, September.
    11. D. E. Ighravwe & S. A. Oke, 2017. "A manufacturing system energy-efficient optimisation model for maintenance-production workforce size determination using integrated fuzzy logic and quality function deployment approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 683-703, December.
    12. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    13. Zhou, Wei & Xu, Zeshui, 2016. "Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites," European Journal of Operational Research, Elsevier, vol. 254(2), pages 610-621.
    14. Lubiano, María Asunción & Montenegro, Manuel & Sinova, Beatriz & de la Rosa de Sáa, Sara & Gil, María Ángeles, 2016. "Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications," European Journal of Operational Research, Elsevier, vol. 251(3), pages 918-929.
    15. Hongzhan Ma & Xuening Chu & Deyi Xue & Dongping Chen, 2019. "Identification of to-be-improved components for redesign of complex products and systems based on fuzzy QFD and FMEA," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 623-639, February.
    16. Jia Huang & Ling-Xiang Mao & Hu-Chen Liu & Min-shun Song, 2022. "Quality function deployment improvement: A bibliometric analysis and literature review," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1347-1366, June.
    17. Min Jiang & Rui Shen & Zhiqing Meng, 2019. "A Concession Equilibrium Solution Method without Weighted Aggregation Operators for Multiattribute Group Decision-Making Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-10, January.
    18. Wan, Shuping & Wang, Feng & Dong, Jiuying, 2017. "Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making," European Journal of Operational Research, Elsevier, vol. 263(2), pages 571-582.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    2. Carnevalli, Jose A. & Miguel, Paulo Cauchick, 2008. "Review, analysis and classification of the literature on QFD--Types of research, difficulties and benefits," International Journal of Production Economics, Elsevier, vol. 114(2), pages 737-754, August.
    3. Chen, Liang-Hsuan & Ko, Wen-Chang & Yeh, Feng-Ting, 2017. "Approach based on fuzzy goal programing and quality function deployment for new product planning," European Journal of Operational Research, Elsevier, vol. 259(2), pages 654-663.
    4. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    5. Kamvysi, Konstantina & Gotzamani, Katerina & Andronikidis, Andreas & Georgiou, Andreas C., 2014. "Capturing and prioritizing students’ requirements for course design by embedding Fuzzy-AHP and linear programming in QFD," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1083-1094.
    6. Dr. Nasser Fegh-hi Farahmand, 2013. "Teaching Strategy as Excellence Organization Mission," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 4(2), pages 16-28, May.
    7. Chin-Hung Liu & Hsin-Hung Wu, 2008. "A fuzzy group decision-making approach in quality function deployment," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(4), pages 527-540, August.
    8. Chen, Liang-Hsuan & Ko, Wen-Chang, 2010. "Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept," European Journal of Operational Research, Elsevier, vol. 201(2), pages 619-632, March.
    9. Jia Huang & Ling-Xiang Mao & Hu-Chen Liu & Min-shun Song, 2022. "Quality function deployment improvement: A bibliometric analysis and literature review," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1347-1366, June.
    10. Iranmanesh, Hossein & Thomson, Vince, 2008. "Competitive advantage by adjusting design characteristics to satisfy cost targets," International Journal of Production Economics, Elsevier, vol. 115(1), pages 64-71, September.
    11. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    12. Chen, Yizeng & Fung, Richard Y.K. & Tang, Jiafu, 2006. "Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1553-1566, November.
    13. Weiqiang Jia & Zhenyu Liu & Zhiyun Lin & Chan Qiu & Jianrong Tan, 2016. "Quantification for the importance degree of engineering characteristics with a multi-level hierarchical structure in QFD," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1627-1649, March.
    14. Majid Behzadian & Seyyed-Mahdi Hosseini-Motlagh & Joshua Ignatius & Mark Goh & Mohammad Mehdi Sepehri, 2013. "PROMETHEE Group Decision Support System and the House of Quality," Group Decision and Negotiation, Springer, vol. 22(2), pages 189-205, March.
    15. Carnevalli, José Antonio & Miguel, Paulo Augusto Cauchick & Calarge, Felipe Araújo, 2010. "Axiomatic design application for minimising the difficulties of QFD usage," International Journal of Production Economics, Elsevier, vol. 125(1), pages 1-12, May.
    16. Lin, Ling-Zhong & Yeh, Huery-Ren & Wang, Ming-Chao, 2015. "Integration of Kano’s model into FQFD for Taiwanese Ban-Doh banquet culture," Tourism Management, Elsevier, vol. 46(C), pages 245-262.
    17. Chowdhury, Md. Maruf Hossan & Quaddus, Mohammed A., 2015. "A multiple objective optimization based QFD approach for efficient resilient strategies to mitigate supply chain vulnerabilities: The case of garment industry of Bangladesh☆,☆☆☆This manuscript was pro," Omega, Elsevier, vol. 57(PA), pages 5-21.
    18. Jun-Jie Dong & Jian-Zhang Wu & Endre Pap & Aniko Szakal, 2017. "A Choquet Capacity and Integral Based Method to Identify the Overall Importance of Engineering Characteristics in Quality Function Deployment," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 297-314.
    19. Schillo, R. Sandra & Isabelle, Diane A. & Shakiba, Abtin, 2017. "Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment," Energy Policy, Elsevier, vol. 100(C), pages 126-137.
    20. Hsin-Hung Wu & Jiunn-I Shieh, 2008. "Applying a markov chain model in quality function deployment," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(5), pages 665-678, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:815-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.