IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v32y2023i6d10.1007_s10726-023-09849-7.html
   My bibliography  Save this article

A Novel CRITIC-RS-VIKOR Group Method with Intuitionistic Fuzzy Information for Renewable Energy Sources Assessment

Author

Listed:
  • Dinesh Kumar Tripathi

    (Government Autonomous College Satna)

  • Santosh K. Nigam

    (Government Autonomous College Satna)

  • Fausto Cavallaro

    (University of Molise)

  • Pratibha Rani

    (Koneru Lakshmaiah Education Foundation)

  • Arunodaya Raj Mishra

    (Government College Raigaon)

  • Ibrahim M. Hezam

    (King Saud University)

Abstract

This study aims to propose a new group multi-attribute decision-analysis (MADA) model to prioritize the renewable energy sources (RESs) from sustainability perspectives. The selection of RESs can be considered as a MADA problem due to considering the numerous conflicting sustainability indicators/factors. In this regard, we propose an integrated decision-making framework with the “criteria importance through inter-criteria correlation (CRITIC)”, the “rank sum (RS)” and the “Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR)” approaches with intuitionistic fuzzy information called the “IF-CRITIC-RS-VIKOR” model. In the developed model, the CRITIC is applied to derive the objective weights, while the RS model is used to compute the subjective weights of the considered sustainability indicators. Further, an incorporated weight-determining formula is presented by combining the CRITIC and RS models under intuitionistic fuzzy environment. Moreover, the VIKOR method is employed to rank the candidate RESs by means of several sustainability indicators. In this line, new intuitionistic fuzzy distance measures are proposed to calculate the “group utility (GU)” and “individual regret (IR)” degrees of candidate RESs. Based on the obtained results, the most significant factors for RESs assessment are impact on ecosystem, technology cost and efficiency, respectively. The assessment outcomes show that the wind energy can serve as an effective RES followed by the solar energy, biomass energy and small hydel energy. Furthermore, comparative study and sensitivity analysis are discussed to show the utility and reasonability of the proposed method.

Suggested Citation

  • Dinesh Kumar Tripathi & Santosh K. Nigam & Fausto Cavallaro & Pratibha Rani & Arunodaya Raj Mishra & Ibrahim M. Hezam, 2023. "A Novel CRITIC-RS-VIKOR Group Method with Intuitionistic Fuzzy Information for Renewable Energy Sources Assessment," Group Decision and Negotiation, Springer, vol. 32(6), pages 1437-1468, December.
  • Handle: RePEc:spr:grdene:v:32:y:2023:i:6:d:10.1007_s10726-023-09849-7
    DOI: 10.1007/s10726-023-09849-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-023-09849-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-023-09849-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:plo:pone00:0217786 is not listed on IDEAS
    2. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    3. Malkawi, Salaheddin & Al-Nimr, Moh'd & Azizi, Danah, 2017. "A multi-criteria optimization analysis for Jordan's energy mix," Energy, Elsevier, vol. 127(C), pages 680-696.
    4. Pankaj Gupta & Mukesh Kumar Mehlawat & Faizan Ahemad, 2023. "Selection of renewable energy sources: a novel VIKOR approach in an intuitionistic fuzzy linguistic environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3429-3467, April.
    5. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    6. Mishra, Arunodaya Raj & Mardani, Abbas & Rani, Pratibha & Kamyab, Hesam & Alrasheedi, Melfi, 2021. "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector," Energy, Elsevier, vol. 237(C).
    7. repec:plo:pone00:0222312 is not listed on IDEAS
    8. Shen, Yung-Chi & Lin, Grace T.R. & Li, Kuang-Pin & Yuan, Benjamin J.C., 2010. "An assessment of exploiting renewable energy sources with concerns of policy and technology," Energy Policy, Elsevier, vol. 38(8), pages 4604-4616, August.
    9. Zhao, Jin & Patwary, Ataul Karim & Qayyum, Abdul & Alharthi, Majed & Bashir, Furrukh & Mohsin, Muhammad & Hanif, Imran & Abbas, Qaiser, 2022. "The determinants of renewable energy sources for the fueling of green and sustainable economy," Energy, Elsevier, vol. 238(PC).
    10. Ahmad, Salman & Nadeem, Abid & Akhanova, Gulzhanat & Houghton, Tom & Muhammad-Sukki, Firdaus, 2017. "Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan," Energy, Elsevier, vol. 141(C), pages 1880-1891.
    11. Arunodaya Raj Mishra & Pratibha Rani, 2018. "Interval-Valued Intuitionistic Fuzzy WASPAS Method: Application in Reservoir Flood Control Management Policy," Group Decision and Negotiation, Springer, vol. 27(6), pages 1047-1078, December.
    12. Ibrahim M. Hezam & Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Abhijit Saha & Jabir Ali & Wadim Strielkowski & Dalia Štreimikienė, 2022. "A Hybrid Intuitionistic Fuzzy-MEREC-RS-DNMA Method for Assessing the Alternative Fuel Vehicles with Sustainability Perspectives," Sustainability, MDPI, vol. 14(9), pages 1-32, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    2. Wu, Yunna & Wang, Jing & Ji, Shaoyu & Song, Zixin, 2020. "Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method," Energy, Elsevier, vol. 190(C).
    3. Mostafayi Darmian, Sobhan & Tavana, Madjid & Ribeiro-Navarrete, Samuel, 2024. "An investment evaluation and incentive allocation model for public-private partnerships in renewable energy development projects," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    4. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    5. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    8. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    9. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    10. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).
    11. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.
    12. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    13. Abdullah Al-Barakati & Pratibha Rani, 2024. "Assessment of healthcare waste treatment methods using an interval-valued intuitionistic fuzzy double normalization-based multiple aggregation approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19397-19424, August.
    14. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    15. Khan, Feroz & Rapposelli, Agnese, 2024. "Determination of sustainable energy mix to ensure energy security in Italy amidst Russian-Ukraine crises," Renewable Energy, Elsevier, vol. 231(C).
    16. Alabbasi, Abdulla & Sadhukhan, Jhuma & Leach, Matthew & Sanduk, Mohammed, 2024. "Accelerating the Transition to sustainable energy: An intelligent decision support system for generation expansion planning with renewables," Energy, Elsevier, vol. 304(C).
    17. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    18. Lihui Zhang & He Xin & Zhinan Kan, 2019. "Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    19. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    20. Najafi, Fatemeh & Kazemi, Mostafa & Mostafaeipour, Ali & Mishra, Phoolenrda, 2025. "Prioritizing industrial wastes and technologies for bioenergy production: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:32:y:2023:i:6:d:10.1007_s10726-023-09849-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.