IDEAS home Printed from https://ideas.repec.org/a/spr/gjorer/v3y2017i1d10.1365_s41056-017-0018-5.html
   My bibliography  Save this article

Simulationsbasierter Ertragswert als Ergänzung zum Verkehrswert
[Simulation-based earnings value as a supplement to the market value]

Author

Listed:
  • Werner Gleißner

    (FutureValue Group AG
    TU Dresden)

  • Tobias Just

    (IREBS Universität Regensburg)

  • Endre Kamarás

    (FutureValue Group AG)

Abstract

Zusammenfassung Die Begriffe „Immobilienpreis“ und „Immobilienwert“ werden häufig synonym verwendet. Das ist dann gerechtfertigt, wenn der Markt tatsächlich dafür sorgt, dass die realisierten Preise die nutzenstiftenden Werte der Zahler abbilden. Doch die heftigen Preisumschwünge auf Immobilien- und Immobilienkapitalmärkten sowie die Erkenntnisse der Verhaltensökonomie legen die Vermutung nahe, dass es Phasen gibt, in denen die Transaktionspreise eben nicht als nachhaltige Werte im Sinne eines als sicher empfundenen Äquivalents für diskontierte, unsichere Zahlungsüberschüsse in der Zukunft angesehen werden können. In diesem Beitrag zeigen wir, dass es häufig hilfreich ist, neben die gängigen Preisschätzverfahren, Bewertungen zu stellen, die auf der Grundlage von Simulationen die Unsicherheit zukünftiger Zahlungen über ein Risiko-Wert-Modell berücksichtigen. Hierbei wird die Monte-Carlo-Simulation nicht wie bei anderen Arbeiten alleine für Inputvariablen und das Ableiten einer Bandbreite für geschätzte Preise genutzt. Die Ergebnisse der Simulation des Cashflows dienen in unserer Arbeit als „Input“ für die Ableitung risikoadäquater Diskontierungszinssätze und eines darauf basierenden fundamentalen Werts. Auch die Trennung in Simulation des Boden- und Immobilienwertes ist in unserer Vorgehensweise neu. Zudem werden Risikodiversifikationseffekte in einem Portfolio abgebildet. Der Portfoliowert stellt dann nicht die Summe aller einzelnen Objektwerte dar, sondern bewertet darüber hinaus Diversifikationseffekte. Ohne die Berücksichtigung der Diversifikationseffekte kann es zu erheblichen Fehlbewertungen von Portfolios kommen. Die zentralen Ergebnisse illustrieren wir anhand eines wohnungswirtschaftlichen Beispiels. Ziel dieser neuen Bewertungsmethode ist nicht ein „besseres“ Preisschätzmodell anstelle der Verkehrswertberechnung vorzustellen, sondern einen intrinsischen Immobilienwert aus spezifischen Annahmen hinsichtlich des Objekts und aus Sicht des Bewerters zu deduzieren. Das Ziel ist nicht, Marktpreise für Immobilien und Immobilienportfolios besser zu treffen als dies von aktuellen Verkehrswertschätzungen gemacht wird, sondern deren „fundamentalen“ Wert zu bestimmen und damit in Kombination von Marktpreisen, bessere Transaktionsentscheidungen zu ermöglichen.

Suggested Citation

  • Werner Gleißner & Tobias Just & Endre Kamarás, 2017. "Simulationsbasierter Ertragswert als Ergänzung zum Verkehrswert [Simulation-based earnings value as a supplement to the market value]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 3(1), pages 21-48, April.
  • Handle: RePEc:spr:gjorer:v:3:y:2017:i:1:d:10.1365_s41056-017-0018-5
    DOI: 10.1365/s41056-017-0018-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1365/s41056-017-0018-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1365/s41056-017-0018-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikodem Szumilo & Pascal Gantenbein & Werner Gleißner & Thomas Wiegelmann, 2016. "Predicting uncertainty: the impact of risk measurement on value of real estate portfolios," Journal of Property Research, Taylor & Francis Journals, vol. 33(1), pages 1-17, March.
    2. Dietmar Meister & Kerstin Dressel, 2017. "Valuation of Real Estate in Germany," Management for Professionals, in: Tobias Just & Wolfgang Maennig (ed.), Understanding German Real Estate Markets, edition 2, pages 133-145, Springer.
    3. Pfnür, Andreas & Armonat, Stefan, 2013. "Modelling uncertain operational cash flows of real estate investments using simulations of stochastic processes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63593, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Charles‐Olivier Amédée‐Manesme & Fabrice Barthélémy & Michel Baroni & Etienne Dupuy, 2013. "Combining Monte Carlo simulations and options to manage the risk of real estate portfolios," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 31(4), pages 360-389, July.
    5. Larry E. Wofford, 1978. "A Simulation Approach to the Appraisal of Income Producing Real Estate," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 6(4), pages 370-394, December.
    6. Hughes, William T, 1995. "Risk Analysis and Asset Valuation: A Monte Carlo Simulation Using Stochastic Rents," The Journal of Real Estate Finance and Economics, Springer, vol. 11(2), pages 177-187, September.
    7. Tobias Just & Wolfgang Maennig (ed.), 2017. "Understanding German Real Estate Markets," Management for Professionals, Springer, edition 2, number 978-3-319-32031-1, December.
    8. Follain, James R. & Giertz, Seth H., 2011. "Using Monte Carlo simulations to establish a new house price stress test," Journal of Housing Economics, Elsevier, vol. 20(2), pages 101-119, June.
    9. Stephen A. Pyhrr, 1973. "A Computer Simulation Model to Measure the Risk in Real Estate Investment," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 1(1), pages 48-78, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Bejol & Nicola Livingstone, 2018. "Revisiting currency swaps: hedging real estate investments in global city markets," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 36(2), pages 191-209, March.
    2. Charles‐Olivier Amédée‐Manesme & Fabrice Barthélémy & Michel Baroni & Etienne Dupuy, 2013. "Combining Monte Carlo simulations and options to manage the risk of real estate portfolios," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 31(4), pages 360-389, July.
    3. Thomas Paul & Thomas Walther & André Küster-Simic, 2022. "Empirical analysis of the illiquidity premia of German real estate securities," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(2), pages 203-260, June.
    4. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2018. "Ex-ante real estate Value at Risk calculation method," Annals of Operations Research, Springer, vol. 262(2), pages 257-285, March.
    5. Elion Jani & Martin Hoesli & André Bender, 2005. "Monte Carlo Simulations for Real Estate Valuation," ERES eres2005_212, European Real Estate Society (ERES).
    6. Charles-Olivier Amédée-Manesme & Michel Baroni & Fabrice Barthélémy & Mahdi Mokrane, 2015. "The impact of lease structures on the optimal holding period for a commercial real estate portfolio," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 33(2), pages 121-139, March.
    7. Charles-Olivier Amédée-Manesme & Michel Baroni & Fabrice Barthélémy & Mahdi Mokrane, 2015. "The impact of lease structures on the optimal holding period for a commercial real estate portfolio," Journal of Property Investment & Finance, Emerald Group Publishing, vol. 33(2), pages 121-139, March.
    8. R. Kelley Pace & Raffaella Calabrese, 2022. "Ignoring Spatial and Spatiotemporal Dependence in the Disturbances Can Make Black Swans Appear Grey," The Journal of Real Estate Finance and Economics, Springer, vol. 65(1), pages 1-21, July.
    9. Serhat Basdogan & Hilde Remøy & Ruud Binnekamp, 2018. "Valuation Construction Permit Uncertainties in Real Estate Development Projects with Stochastic Decision Tree Analysis," ERES eres2018_265, European Real Estate Society (ERES).
    10. Amédée-Manesme, Charles-Olivier & des Rosiers, François & Grégoire, Philippe, 2015. "The pricing of embedded lease options," Finance Research Letters, Elsevier, vol. 15(C), pages 215-220.
    11. Klick, Larissa & Schaffner, Sandra, 2019. "FDZ data description: Regional real estate price indices for Germany (RWI-GEO-REDX)," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 195945.
    12. Robert M. Dunsky & James R. Follain & Seth H. Giertz, 2021. "Pricing Credit Risk for Mortgages: Credit Risk Spreads and Heterogeneity across Housing Markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(3), pages 997-1032, September.
    13. Hendershott, Patric H & Ward, Charles W R, 2003. "Valuing and Pricing Retail Leases with Renewal and Overage Options," The Journal of Real Estate Finance and Economics, Springer, vol. 26(2-3), pages 223-240, March-May.
    14. Binchao Deng & Dongjie Zhou & Jiachen Zhao & Yilin Yin & Xiaoyu Li, 2021. "Fuzzy Synthetic Evaluation of the Critical Success Factors for the Sustainability of Public Private Partnership Projects in China," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    15. Erika Meins & Daniel Sager, 2013. "Sustainability and Risk: Towards a Risk-Based Sustainability Rating for Real Estate Investments," ERES eres2013_254, European Real Estate Society (ERES).
    16. Klick, Larissa & Schaffner, Sandra, 2019. "FDZ data description: Regional real estate price indices for Germany (RWI-GEO-REDX) - Version 2: 2008-02/2019," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 202066.
    17. João da Rocha Lima & Cláudio Tavares de Alencar, 2006. "Os Atributos Do Mercado Brasileiro De Empreendimentos De Base Imobiliária Para Captar Recursos De Investidores Estrangeiros," LARES lares_2006_artigo-claudio, Latin American Real Estate Society (LARES).
    18. Charles-Olivier Amédée-Manesme & Francois Des Rosiers & Philippe Grégoire, 2017. "Commercial leases, terms and options in the light of game theory," ERES eres2017_175, European Real Estate Society (ERES).
    19. Mayo, Stephen & Sheppard, Stephen, 2001. "Housing Supply and the Effects of Stochastic Development Control," Journal of Housing Economics, Elsevier, vol. 10(2), pages 109-128, June.
    20. Goran Karanovic & Bisera Gjosevska, 2012. "Analysis of Risk and Uncertainty Using Monte Carlo Simulation and its Influence on Project Realization," Annals - Economic and Administrative Series -, Faculty of Business and Administration, University of Bucharest, vol. 6(1), pages 145-162, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:gjorer:v:3:y:2017:i:1:d:10.1365_s41056-017-0018-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.