IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v32y2020i4d10.1007_s10696-019-09359-2.html
   My bibliography  Save this article

Scheduling approach for on-site jobs of service providers

Author

Listed:
  • Tibor Holczinger

    (University of Pannonia)

  • Olivér Ősz

    (Széchenyi István University)

  • Máté Hegyháti

    (Széchenyi István University)

Abstract

Nowadays the successful operation of a company is unimaginable without fast and reliable communication. As a result, so-called Communication Service Providers play an important role in today’s business life. Their orders have to be carried out promptly and dependably, let them be requests for new installations, modifications, or maintenance tasks. These orders have to be performed at different locations and they often have deadlines or strict starting times. Violating such a timing requirement usually implies penalties. In this paper, scheduling problems arising at a Hungarian service provider are examined. At this company, orders are decomposed into smaller tasks, which can be performed by specially trained personnel. Transportation of these specialists contributes a lot to the costs and to the complexity of their scheduling, as well. The goal is to minimize the overall cost of satisfying all orders within the given time horizon with the available assets of the company. The proposed approach relies on the S-graph framework, which has been applied to various production scheduling problems in the literature. In addition to an unambiguous and sound S-graph model of the examined problem, slight modifications of the scheduling algorithms for cost minimization, and new bounding methods have been developed. Several of such bounds have been provided and tested for performance and scalability over a large number of generated examples. The sensitivity of the approach for certain problem features has also been examined.

Suggested Citation

  • Tibor Holczinger & Olivér Ősz & Máté Hegyháti, 2020. "Scheduling approach for on-site jobs of service providers," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 913-948, December.
  • Handle: RePEc:spr:flsman:v:32:y:2020:i:4:d:10.1007_s10696-019-09359-2
    DOI: 10.1007/s10696-019-09359-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09359-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09359-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    4. Reil, Sebastian & Bortfeldt, Andreas & Mönch, Lars, 2018. "Heuristics for vehicle routing problems with backhauls, time windows, and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 266(3), pages 877-894.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    2. Xu, Peijuan & Corman, Francesco & Peng, Qiyuan & Luan, Xiaojie, 2017. "A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 638-666.
    3. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    4. Lei Chen & Haiyan Ma & Yi Wang & Feng Li, 2022. "Vehicle Routing Problem for the Simultaneous Pickup and Delivery of Lithium Batteries of Small Power Vehicles under Charging and Swapping Mode," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    5. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    6. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    7. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    8. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    9. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    10. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    11. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    12. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    13. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    14. Tianlu Zhao & Yongjian Yang & En Wang, 2020. "Minimizing the average arriving distance in carpooling," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    15. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    16. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    17. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    18. Wenxing Wu & Jing Xun & Jiateng Yin & Shibo He & Haifeng Song & Zicong Zhao & Shicong Hao, 2023. "An Integrated Method for Reducing Arrival Interval by Optimizing Train Operation and Route Setting," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:32:y:2020:i:4:d:10.1007_s10696-019-09359-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.