IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v71y2018icp97-107.html
   My bibliography  Save this article

Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions

Author

Listed:
  • Murça, Mayara Condé Rocha

Abstract

This paper discusses the air traffic flow management problem under the new operating paradigm of collaborative rerouting. A route and slot allocation model that incorporates flight operator's disutility cost of rerouting to avoid an impacted airspace is proposed to optimally schedule flights into multiple flow constrained areas. In order to evaluate the benefits of a combined rerouting/ground holding control mechanism and assess the impacts of accounting for airline preferences on individual and aggregate system delays, the model is applied to a realistic case of flow management into LaGuardia Airport under capacity constraints caused by convective weather conditions in the transition airspace. The results show that incorporating rerouting as a control action has the potential to reduce flight delays considerably if compared to traditional ground holding based mechanisms. Moreover, the specific flight operators' inputs regarding route preference and cost of rerouting and the route network characteristics have major contributions to individual and system level efficiency. Finally, efficiency-fairness trade-offs are discussed for the multi-resource allocation process based on different fairness schemes.

Suggested Citation

  • Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
  • Handle: RePEc:eee:jaitra:v:71:y:2018:i:c:p:97-107
    DOI: 10.1016/j.jairtraman.2018.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717302879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2018.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    2. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    3. Octavio Richetta & Amedeo R. Odoni, 1993. "Solving Optimally the Static Ground-Holding Policy Problem in Air Traffic Control," Transportation Science, INFORMS, vol. 27(3), pages 228-238, August.
    4. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    5. Thomas Vossen & Michael Ball, 2006. "Optimization and mediated bartering models for ground delay programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 75-90, February.
    6. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    7. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    8. Dimitris Bertsimas & Michael Frankovich & Amedeo Odoni, 2011. "Optimal Selection of Airport Runway Configurations," Operations Research, INFORMS, vol. 59(6), pages 1407-1419, December.
    9. Michael O. Ball & Robert Hoffman & Amedeo R. Odoni & Ryan Rifkin, 2003. "A Stochastic Integer Program with Dual Network Structure and Its Application to the Ground-Holding Problem," Operations Research, INFORMS, vol. 51(1), pages 167-171, February.
    10. Richetta, Octavio & Odoni, Amedeo R., 1994. "Dynamic solution to the ground-holding problem in air traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 167-185, May.
    11. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    12. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    13. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    14. Mukherjee, Avijit & Hansen, Mark, 2009. "A dynamic rerouting model for air traffic flow management," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 159-171, January.
    15. Murça, Mayara Condé Rocha & Müller, Carlos, 2015. "Control-based optimization approach for aircraft scheduling in a terminal area with alternative arrival routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 96-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Kaiquan & Shen, Zhiqi & Luo, Xiaoyan & Li, Yue, 2023. "Temporal attention aware dual-graph convolution network for air traffic flow prediction," Journal of Air Transport Management, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    2. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    3. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    4. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    5. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    6. Chen, J. & Chen, L. & Sun, D., 2017. "Air traffic flow management under uncertainty using chance-constrained optimization," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 124-141.
    7. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    8. Mukherjee, Avijit, 2004. "Dynamic Stochastic Optimization Models for Air Traffic Flow Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2vk8w6nc, Institute of Transportation Studies, UC Berkeley.
    9. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    10. Dimitris Bertsimas & Shubham Gupta, 2016. "Fairness and Collaboration in Network Air Traffic Flow Management: An Optimization Approach," Transportation Science, INFORMS, vol. 50(1), pages 57-76, February.
    11. Balázs Kotnyek & Octavio Richetta, 2006. "Equitable Models for the Stochastic Ground-Holding Problem Under Collaborative Decision Making," Transportation Science, INFORMS, vol. 40(2), pages 133-146, May.
    12. Mukherjee, Avijit & Hansen, Mark, 2009. "A dynamic rerouting model for air traffic flow management," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 159-171, January.
    13. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    14. Zhang, Qiuhan & Le, Meilong & Xu, Yan, 2021. "Collaborative delay management towards demand-capacity balancing within User Driven Prioritisation Process," Journal of Air Transport Management, Elsevier, vol. 91(C).
    15. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    16. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    17. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    18. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    19. Yi Liu & Mark Hansen, 2016. "Incorporating Predictability Into Cost Optimization for Ground Delay Programs," Transportation Science, INFORMS, vol. 50(1), pages 132-149, February.
    20. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:71:y:2018:i:c:p:97-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.