IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v215y2011i3p697-704.html
   My bibliography  Save this article

An aggregate stochastic programming model for air traffic flow management

Author

Listed:
  • Andreatta, Giovanni
  • Dell'Olmo, Paolo
  • Lulli, Guglielmo

Abstract

In this paper, we present an aggregate mathematical model for air traffic flow management (ATFM), a problem of great concern both in Europe and in the United States. The model extends previous approaches by simultaneously taking into account three important issues: (i) the model explicitly incorporates uncertainty in the airport capacities; (ii) it also considers the trade-off between airport arrivals and departures, which is a crucial issue in any hub airport; and (iii) it takes into account the interactions between different hubs. The level of aggregation proposed for the mathematical model allows us to solve realistic size instances with a commercial solver on a PC. Moreover it allows us to compute solutions which are perfectly consistent with the Collaborative Decision-Making (CDM) procedure in ATFM, widely adopted in the USA and which is currently receiving a lot of attention in Europe. In fact, the proposed model suggests the number of flights that should be delayed, a decision that belongs to the ATFM Authority, rather than assigning delays to individual aircraft.

Suggested Citation

  • Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
  • Handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:697-704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711005571
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. Peter B. M. Vranas & Dimitris Bertsimas & Amedeo R. Odoni, 1994. "Dynamic Ground-Holding Policies for a Network of Airports," Transportation Science, INFORMS, vol. 28(4), pages 275-291, November.
    4. Alonso, Antonio & Escudero, Laureano F. & Teresa Ortuno, M., 2000. "A stochastic 0-1 program based approach for the air traffic flow management problem," European Journal of Operational Research, Elsevier, vol. 120(1), pages 47-62, January.
    5. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    6. Michael O. Ball & Robert Hoffman & Amedeo R. Odoni & Ryan Rifkin, 2003. "A Stochastic Integer Program with Dual Network Structure and Its Application to the Ground-Holding Problem," Operations Research, INFORMS, vol. 51(1), pages 167-171, February.
    7. G. Andreatta & G. Romanin-Jacur, 1987. "Aircraft Flow Management under Congestion," Transportation Science, INFORMS, vol. 21(4), pages 249-253, November.
    8. Mostafa Terrab & Amedeo R. Odoni, 1993. "Strategic Flow Management for Air Traffic Control," Operations Research, INFORMS, vol. 41(1), pages 138-152, February.
    9. Balázs Kotnyek & Octavio Richetta, 2006. "Equitable Models for the Stochastic Ground-Holding Problem Under Collaborative Decision Making," Transportation Science, INFORMS, vol. 40(2), pages 133-146, May.
    10. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    11. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    12. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    2. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    3. Chen, Dan & Hu, Minghua & Zhang, Honghai & Yin, Jianan & Han, Ke, 2017. "A network based dynamic air traffic flow model for en route airspace system traffic flow optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 1-19.
    4. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    5. Caccavale, Maria Virginia & Iovanella, Antonio & Lancia, Carlo & Lulli, Guglielmo & Scoppola, Benedetto, 2014. "A model of inbound air traffic: The application to Heathrow airport," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 116-122.
    6. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    2. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    3. Churchill, Andrew M. & Lovell, David J., 2012. "Coordinated aviation network resource allocation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 19-33.
    4. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    5. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    6. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    7. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    8. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    10. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    11. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    12. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    13. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    14. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    15. Michael O. Ball & Robert Hoffman & Avijit Mukherjee, 2010. "Ground Delay Program Planning Under Uncertainty Based on the Ration-by-Distance Principle," Transportation Science, INFORMS, vol. 44(1), pages 1-14, February.
    16. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    17. Wei, P. & Cao, Y. & Sun, D., 2013. "Total unimodularity and decomposition method for large-scale air traffic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 1-16.
    18. Xu, Yan & Dalmau, Ramon & Melgosa, Marc & Montlaur, Adeline & Prats, Xavier, 2020. "A framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling trajectory options and flexible pre-tactical delay management," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 229-255.
    19. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    20. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:215:y:2011:i:3:p:697-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.