IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v48y2012i1p19-33.html
   My bibliography  Save this article

Coordinated aviation network resource allocation under uncertainty

Author

Listed:
  • Churchill, Andrew M.
  • Lovell, David J.

Abstract

Congestion in the air traffic system, both recurrent and non-recurrent, is typically handled by rationing access rights to individual resources such as airports or important parts of the airspace. Under the planning paradigm employed in the US, this rationing process occurs independently at each resource. The stochastic integer programming model proposed in this paper brings coordination to this process while considering capacity uncertainty. Results of a case study suggest that the model is tractable, and generates capacity allocations that improve efficiency and enable greater responsiveness to changing capacity conditions.

Suggested Citation

  • Churchill, Andrew M. & Lovell, David J., 2012. "Coordinated aviation network resource allocation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 19-33.
  • Handle: RePEc:eee:transe:v:48:y:2012:i:1:p:19-33
    DOI: 10.1016/j.tre.2011.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554511000652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2011.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    2. Peter B. M. Vranas & Dimitris Bertsimas & Amedeo R. Odoni, 1994. "Dynamic Ground-Holding Policies for a Network of Airports," Transportation Science, INFORMS, vol. 28(4), pages 275-291, November.
    3. Octavio Richetta & Amedeo R. Odoni, 1993. "Solving Optimally the Static Ground-Holding Policy Problem in Air Traffic Control," Transportation Science, INFORMS, vol. 27(3), pages 228-238, August.
    4. Mostafa Terrab & Amedeo R. Odoni, 1993. "Strategic Flow Management for Air Traffic Control," Operations Research, INFORMS, vol. 41(1), pages 138-152, February.
    5. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    6. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    7. Peter B. Vranas & Dimitris J. Bertsimas & Amedeo R. Odoni, 1994. "The Multi-Airport Ground-Holding Problem in Air Traffic Control," Operations Research, INFORMS, vol. 42(2), pages 249-261, April.
    8. Guglielmo Lulli & Amedeo Odoni, 2007. "The European Air Traffic Flow Management Problem," Transportation Science, INFORMS, vol. 41(4), pages 431-443, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    2. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    3. Bhattarai, Santosh & Golias, Mihalis M. & Mishra, Sabyasachee & Talebian, Ahmadreza, 2020. "Multidimensional resource allocation for freight transportation project planning and decision making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 95-110.
    4. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    2. Kammoun, Mohamed Ali & Rezg, Nidhal, 2018. "An efficient hybrid approach for resolving the aircraft routing and rescheduling problem," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 73-87.
    3. Andreatta, Giovanni & Dell'Olmo, Paolo & Lulli, Guglielmo, 2011. "An aggregate stochastic programming model for air traffic flow management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 697-704, December.
    4. Chen, Yunxiang & Zhao, Yifei & Wu, Yexin, 2024. "Recent progress in air traffic flow management: A review," Journal of Air Transport Management, Elsevier, vol. 116(C).
    5. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    6. Thomas W. M. Vossen & Michael O. Ball, 2006. "Slot Trading Opportunities in Collaborative Ground Delay Programs," Transportation Science, INFORMS, vol. 40(1), pages 29-43, February.
    7. Diao, Xudong & Chen, Chun-Hsien, 2018. "A sequence model for air traffic flow management rerouting problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 15-30.
    8. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    9. Cynthia Barnhart & Dimitris Bertsimas & Constantine Caramanis & Douglas Fearing, 2012. "Equitable and Efficient Coordination in Traffic Flow Management," Transportation Science, INFORMS, vol. 46(2), pages 262-280, May.
    10. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    11. Alexander S. Estes & Michael O. Ball, 2020. "Equity and Strength in Stochastic Integer Programming Models for the Dynamic Single Airport Ground-Holding Problem," Transportation Science, INFORMS, vol. 54(4), pages 944-955, July.
    12. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    13. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    14. Wei, P. & Cao, Y. & Sun, D., 2013. "Total unimodularity and decomposition method for large-scale air traffic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 1-16.
    15. Bolić, Tatjana & Castelli, Lorenzo & Corolli, Luca & Scaini, Giovanni, 2021. "Flexibility in strategic flight planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    16. Leal de Matos, Paula & Ormerod, Richard, 2000. "The application of operational research to European air traffic flow management - understanding the context," European Journal of Operational Research, Elsevier, vol. 123(1), pages 125-144, May.
    17. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    18. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    19. Sun, D. & Clinet, A. & Bayen, A.M., 2011. "A dual decomposition method for sector capacity constrained traffic flow optimization," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 880-902, July.
    20. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:48:y:2012:i:1:p:19-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.