IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v8y2019i5d10.1007_s13676-019-00144-7.html
   My bibliography  Save this article

Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis

Author

Listed:
  • Ido Orenstein

    (Tel Aviv University)

  • Tal Raviv

    (Tel Aviv University)

  • Elad Sadan

    (Tel Aviv University)

Abstract

In this study, we introduce a logistic model for the delivery of small parcels to a set of service points (SPs), and we present effective methods for solving it. In the traditional delivery model, each recipient specifies a single location at which they wish to receive the parcel; however, when SPs are used, many recipients may have no strong preference among several locations, e.g., near the recipient’s home address, near the recipient’s office, or in the recipient’s favorite shopping mall. If some recipients are flexible and willing to provide the sender with more than one delivery location, it is possible to perform the delivery task at lower cost and within a shorter amount of time. Our solution methods are based on the concepts of the savings heuristic, the petal method and tabu search with a large neighborhood. An extensive numerical study is conducted to evaluate our solution methods and demonstrate the benefits of our model compared to the traditional nonflexible one. We also present a simulation study to demonstrate that our model can be adapted to a stochastic and dynamic environment.

Suggested Citation

  • Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
  • Handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00144-7
    DOI: 10.1007/s13676-019-00144-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-019-00144-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-019-00144-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    2. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    3. Benjamin Biesinger & Bin Hu & Günther R. Raidl, 2018. "A Genetic Algorithm in Combination with a Solution Archive for Solving the Generalized Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 52(3), pages 673-690, June.
    4. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    5. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    6. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    7. N H Moin & S Salhi, 2007. "Inventory routing problems: a logistical overview," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1185-1194, September.
    8. Kemal Altinkemer & Bezalel Gavish, 1991. "Parallel Savings Based Heuristics for the Delivery Problem," Operations Research, INFORMS, vol. 39(3), pages 456-469, June.
    9. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    10. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    11. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    12. Eléonora Morganti & Laetitia Dablanc & François Fortin, 2014. "Final deliveries for online shopping: the deployment of pickup point networks in urban and suburban areas," Post-Print hal-01067223, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    4. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    6. Nima Pourmohammadreza & Mohammad Reza Akbari Jokar, 2023. "A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    7. Michal Stojanov, 2022. "Automated Parcel Terminals - Commercialization of the System for Automated Post Services," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 11(2), pages 21-28, August.
    8. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    9. Kahr, Michael, 2022. "Determining locations and layouts for parcel lockers to support supply chain viability at the last mile," Omega, Elsevier, vol. 113(C).
    10. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    11. Massimo Di Gangi & Antonio Polimeni & Orlando Marco Belcore, 2023. "Freight Distribution in Small Islands: Integration between Naval Services and Parcel Lockers," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    12. Nadia Giuffrida & Jenny Fajardo-Calderin & Antonio D. Masegosa & Frank Werner & Margarete Steudter & Francesco Pilla, 2022. "Optimization and Machine Learning Applied to Last-Mile Logistics: A Review," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    13. Heimfarth, Andreas & Ostermeier, Manuel & Hübner, Alexander, 2022. "A mixed truck and robot delivery approach for the daily supply of customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 401-421.
    14. Lin, Yunhui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Profit-maximizing parcel locker location problem under threshold Luce model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    15. Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    16. Roberta Alves & Renato da Silva Lima & Leise Kelli De Oliveira & Alexandre Ferreira de Pinho, 2022. "Conceptual Framework for Evaluating E-Commerce Deliveries Using Agent-Based Modelling and Sensitivity Analysis," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    17. José M. González-Varona & Félix Villafáñez & Fernando Acebes & Alfonso Redondo & David Poza, 2020. "Reusing Newspaper Kiosks for Last-Mile Delivery in Urban Areas," Sustainability, MDPI, vol. 12(22), pages 1-27, November.
    18. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    2. Afsar, Hasan Murat & Afsar, Sezin & Palacios, Juan José, 2021. "Vehicle routing problem with zone-based pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    4. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    5. Vansteenwegen, Pieter & Mateo, Manuel, 2014. "An iterated local search algorithm for the single-vehicle cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 802-813.
    6. Michael D. Moskal & Erdi Dasdemir & Rajan Batta, 2023. "Unmanned Aerial Vehicle Information Collection Missions with Uncertain Characteristics," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 120-137, January.
    7. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    8. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    9. Pablo A. Miranda-Gonzalez & Javier Maturana-Ross & Carola A. Blazquez & Guillermo Cabrera-Guerrero, 2021. "Exact Formulation and Analysis for the Bi-Objective Insular Traveling Salesman Problem," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    10. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    11. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    12. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    13. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
    14. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    15. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    16. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    17. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    18. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    19. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    20. Freeman, Nickolas K. & Keskin, Burcu B. & Çapar, İbrahim, 2018. "Attractive orienteering problem with proximity and timing interactions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 354-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00144-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.