IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v18y2014i1p175-208.html
   My bibliography  Save this article

Efficient discretization of stochastic integrals

Author

Listed:
  • Masaaki Fukasawa

    ()

Abstract

Sharp asymptotic lower bounds on the expected quadratic variation of the discretization error in stochastic integration are given when the integrator admits a predictable quadratic variation and the integrand is a continuous semimartingale with nondegenerate local martingale part. The theory relies on inequalities for the kurtosis and skewness of a general random variable which are themselves seemingly new. Asymptotically efficient schemes which attain the lower bounds are constructed explicitly. The result is directly applicable to a practical hedging problem in mathematical finance; for hedging a payoff which is replicated by a continuous-time trading strategy, it gives an asymptotically optimal way to choose discrete rebalancing dates and portfolios with respect to transaction costs. The asymptotically efficient strategies in fact reflect the structure of the transaction costs. In particular, a specific biased rebalancing scheme is shown to be superior to unbiased schemes if the transaction costs follow a convex model. The problem is discussed also in terms of exponential utility maximization. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
  • Handle: RePEc:spr:finsto:v:18:y:2014:i:1:p:175-208
    DOI: 10.1007/s00780-013-0215-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-013-0215-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. " Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. repec:dau:papers:123456789/4654 is not listed on IDEAS
    3. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    4. Fukasawa, Masaaki, 2010. "Realized volatility with stochastic sampling," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 829-852, June.
    5. A.E. Whalley & P. Wilmott, 1999. "Optimal Hedging of Options with Small but Arbitrary Transaction Cost Structure," OFRC Working Papers Series 1999mf09, Oxford Financial Research Centre.
    6. Geiss, Christel & Geiss, Stefan, 2006. "On an approximation problem for stochastic integrals where random time nets do not help," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 407-422, March.
    7. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183 World Scientific Publishing Co. Pte. Ltd..
    8. Mathieu Rosenbaum & Peter Tankov, 2011. "Asymptotically optimal discretization of hedging strategies with jumps," Papers 1108.5940, arXiv.org, revised Apr 2014.
    9. Emmanuel Denis & Yuri Kabanov, 2010. "Mean square error for the Leland–Lott hedging strategy: convex pay-offs," Finance and Stochastics, Springer, vol. 14(4), pages 625-667, December.
    10. Bertsimas, Dimitris & Kogan, Leonid & Lo, Andrew W., 2000. "When is time continuous?," Journal of Financial Economics, Elsevier, vol. 55(2), pages 173-204, February.
    11. Nicole El Karoui & Monique Jeanblanc-Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126.
    12. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
    13. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Fukasawa, 2014. "Efficient price dynamics in a limit order market: an utility indifference approach," Papers 1410.8224, arXiv.org.
    2. Bruno Bouchard & Johannes Muhle-Karbe, 2018. "Simple Bounds for Transaction Costs," Working Papers hal-01711371, HAL.
    3. Bruno Bouchard & Johannes Muhle-Karbe, 2018. "Simple Bounds for Transaction Costs," Papers 1802.06120, arXiv.org.
    4. Masaaki Fukasawa & Mitja Stadje, 2017. "Perfect hedging under endogenous permanent market impacts," Papers 1702.01385, arXiv.org.
    5. Albert Altarovici & Johannes Muhle-Karbe & Halil Soner, 2015. "Asymptotics for fixed transaction costs," Finance and Stochastics, Springer, vol. 19(2), pages 363-414, April.
    6. repec:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-017-0352-4 is not listed on IDEAS

    More about this item

    Keywords

    Itô integral; Riemann sum; Kurtosis; Skewness; Asymptotic efficiency; Discrete hedging; 60H05; 60F05; G11;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:18:y:2014:i:1:p:175-208. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.