IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00808608.html
   My bibliography  Save this paper

Approximate hedging problem with transaction costs in stochastic volatility markets

Author

Listed:
  • Huu Thai Nguyen

    (LMRS - Laboratoire de Mathématiques Raphaël Salem - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - CNRS - Centre National de la Recherche Scientifique)

  • Serguei Pergamenchtchikov

    (LMRS - Laboratoire de Mathématiques Raphaël Salem - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper investigates the problem of hedging European call options using Leland's strategy in stochastic volatility markets with transaction costs. Introducing a new form for the enlarged volatility in Leland's algorithm, we establish a limit theorem and determine a convergence rate for the hedging error. This provides a suggestion to release the underhedging property pointed out by Kabanov and Safarian (1997). Possibilities to improve the convergence rate and lower the option price inclusive transaction costs are also discussed.

Suggested Citation

  • Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00808608, HAL.
  • Handle: RePEc:hal:wpaper:hal-00808608
    Note: View the original document on HAL open archive server: https://hal.science/hal-00808608v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00808608v2/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Yuri M. Kabanov & (*), Mher M. Safarian, 1997. "On Leland's strategy of option pricing with transactions costs," Finance and Stochastics, Springer, vol. 1(3), pages 239-250.
    3. Emmanuel Denis & Yuri Kabanov, 2010. "Mean square error for the Leland–Lott hedging strategy: convex pay-offs," Finance and Stochastics, Springer, vol. 14(4), pages 625-667, December.
    4. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    5. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    6. Micha{l} Barski, 2010. "Quantile hedging for basket derivatives," Papers 1010.5810, arXiv.org, revised Jan 2016.
    7. Peter Grandits & Werner Schachinger, 2001. "Leland's Approach to Option Pricing: The Evolution of a Discontinuity," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 347-355, July.
    8. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    9. repec:dau:papers:123456789/4654 is not listed on IDEAS
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    12. repec:dau:papers:123456789/4055 is not listed on IDEAS
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. repec:dau:papers:123456789/9304 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hal:wpaper:hal-03284655 is not listed on IDEAS
    2. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2014. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Working Papers hal-00979199, HAL.
    3. Thai Huu Nguyen & Serguei Pergamenschchikov, 2015. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Papers 1505.02627, arXiv.org, revised Sep 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Huu Nguyen & Serguei Pergamenshchikov, 2015. "Approximate hedging problem with transaction costs in stochastic volatility markets," Papers 1505.02546, arXiv.org.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Gabriele Fiorentini & Angel León & Gonzalo Rubio, "undated". "Short-term options with stochastic volatility: Estimation and empirical performance," Studies on the Spanish Economy 02, FEDEA.
    4. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    5. Fathi Abid & Wafa Abdelmalek & Sana Ben Hamida, 2020. "Dynamic Hedging using Generated Genetic Programming Implied Volatility Models," Papers 2006.16407, arXiv.org.
    6. Serguei Pergamenchtchikov & Alena Shishkova, 2020. "Hedging problems for Asian options with transactions costs," Papers 2001.01443, arXiv.org.
    7. J. S. Kennedy & P. A. Forsyth & K. R. Vetzal, 2009. "Dynamic Hedging Under Jump Diffusion with Transaction Costs," Operations Research, INFORMS, vol. 57(3), pages 541-559, June.
    8. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    9. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "Risk preference, option pricing and portfolio hedging with proportional transaction costs," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 111-130.
    10. Virginia R. Young, 2004. "Pricing In An Incomplete Market With An Affine Term Structure," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 359-381, July.
    11. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    12. Christian Gouriéroux & Joann Jasiak & Peng Xu, 2013. "Non-tradable S&P 500 Index and the Pricing of Its Traded Derivatives," Working Papers 2013-05, Center for Research in Economics and Statistics.
    13. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2014. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Working Papers hal-00979199, HAL.
    16. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    17. Baule, Rainer & Münchhalfen, Patrick & Shkel, David & Tallau, Christian, 2023. "Fair-washing in the market for structured retail products? Voluntary self-regulation versus government regulation," Journal of Banking & Finance, Elsevier, vol. 148(C).
    18. Siddiqi, Hammad, 2015. "Behavioralizing the Black-Scholes Model," MPRA Paper 86234, University Library of Munich, Germany.
    19. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    20. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.

    More about this item

    Keywords

    Leland strategy; transaction costs; quantile hedging; limit theorem;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00808608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.