IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v8y2022i1d10.1186_s40854-022-00369-y.html
   My bibliography  Save this article

DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks

Author

Listed:
  • Xiaoyu Tan

    (Peking University
    Harvest Fund Management)

  • Zili Zhang

    (Harvest Fund Management)

  • Xuejun Zhao

    (Harvest Fund Management)

  • Shuyi Wang

    (Zhejiang University)

Abstract

Convertible bonds are an important segment of the corporate bond market, however, as hybrid instruments, convertible bonds are difficult to value because they depend on variables related to the underlying stock, the fixed-income part, and the interaction between these components. Besides, embedded options, such as conversion, call, and put provisions are often restricted to certain periods, may vary over time, and are subject to additional path-dependent features of the state variables. Moreover, the most challenging problem in convertible bond valuation is the underlying stock return process modeling as it retains various complex statistical properties. In this paper, we propose DeepPricing, a novel data-driven convertible bonds pricing model, which is inspired by the recent success of generative adversarial networks (GAN), to address the above challenges. The method introduces a new financial time-series generative adversarial networks (FinGAN), which is able to reproduce risk-neutral stock return process that retains the unique statistical properties such as the fat-tailed distributions, the long-range dependence, and the asymmetry structure etc., and then transit to its risk-neutral distribution. Thus it is more flexible and accurate to capture the dynamics of the underlying stock return process and keep the rich set of real-world convertible bond specifications compared with previous model-driven models. The experiments on the Chinese convertible bond market demonstrate the effectiveness of DeepPricing model. Compared with the convertible bond market prices, our model has a better convertible bonds pricing performance than both model-driven models, i.e. Black-Scholes, the constant elasticity of variance, GARCH, and the state-of-the-art GAN-based models, i.e. FinGAN-MLP, FinGAN-LSTM. Moreover, our model has a better fitting capacity for higher-volatility convertible bonds and the overall convertible bond market implied volatility smirk, especially for equity-liked convertible bonds, convertible bonds trading in the bull market, and out-of-the-money convertible bonds. Furthermore, the Long-Short and Long-Only investment strategies based on our model earn a significant annualized return with 41.16% and 31.06%, respectively, for the equally-weighted portfolio during the sample period.

Suggested Citation

  • Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
  • Handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00369-y
    DOI: 10.1186/s40854-022-00369-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00369-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00369-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
    3. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    4. Batten, Jonathan A. & Khaw, Karren Lee-Hwei & Young, Martin R., 2018. "Pricing convertible bonds," Journal of Banking & Finance, Elsevier, vol. 92(C), pages 216-236.
    5. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    6. Changfu Ma & Wei Xu & George Yuan, 2020. "Valuation model for Chinese convertible bonds with soft call/put provision under the hybrid willow tree," Quantitative Finance, Taylor & Francis Journals, vol. 20(12), pages 2037-2053, December.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    9. Fan, Chenxi & Luo, Xingguo & Wu, Qingbiao, 2017. "Stochastic volatility vs. jump diffusions: Evidence from the Chinese convertible bond market," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 1-16.
    10. Stephen J. Brown & Bruce D. Grundy & Craig M. Lewis & Patrick Verwijmeren, 2012. "Convertibles and Hedge Funds as Distributors of Equity Exposure," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3077-3112.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Lewis, Craig M., 1991. "Convertible debt: Valuation and conversion in complex capital structures," Journal of Banking & Finance, Elsevier, vol. 15(3), pages 665-682, June.
    13. McConnell, John J & Schwartz, Eduardo S, 1986. "LYON Taming," Journal of Finance, American Finance Association, vol. 41(3), pages 561-576, July.
    14. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    15. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    17. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    18. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. K. G. Nyborg, 1996. "The use and pricing of convertible bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(3), pages 167-190.
    22. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    23. Ingersoll, Jonathan Jr., 1977. "A contingent-claims valuation of convertible securities," Journal of Financial Economics, Elsevier, vol. 4(3), pages 289-321, May.
    24. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    25. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    26. Tan, Xiaoyu & Zhang, Zili & Zhao, Xuejun & Wang, Chengxiang, 2021. "Investor sentiment and limits of arbitrage: Evidence from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 577-595.
    27. Kyoko Yagi & Katsushige Sawaki, 2010. "The Valuation Of Callable-Puttable Reverse Convertible Bonds," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 189-209.
    28. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    29. Brennan, M J & Schwartz, Eduardo S, 1977. "Convertible Bonds: Valuation and Optimal Strategies for Call and Conversion," Journal of Finance, American Finance Association, vol. 32(5), pages 1699-1715, December.
    30. Akihiko Takahashi & Takao Kobayashi & Naruhisa Nakagawa, 2001. "Pricing Convertible Bonds with Default Risk: A Duffie-Singleton Approach," CIRJE F-Series CIRJE-F-140, CIRJE, Faculty of Economics, University of Tokyo.
    31. Barone-Adesi, Giovanni & Bermudez, Ana & Hatgioannides, John, 2003. "Two-factor convertible bonds valuation using the method of characteristics/finite elements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1801-1831, August.
    32. Jensen, Mogens H. & Johansen, Anders & Simonsen, Ingve, 2003. "Inverse statistics in economics: the gain–loss asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 338-343.
    33. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    34. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    35. Burlacu, Radu, 2000. "New evidence on the pecking order hypothesis: the case of French convertible bonds," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 439-459, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    2. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    3. Tian‐Shyr Dai & Chen‐Chiang Fan & Liang‐Chih Liu & Chuan‐Ju Wang & Jr‐Yan Wang, 2022. "A stochastic‐volatility equity‐price tree for pricing convertible bonds with endogenous firm values and default risks determined by the first‐passage default model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2103-2134, December.
    4. Yuriy Zabolotnyuk & Robert Jones & Chris Veld, 2010. "An Empirical Comparison of Convertible Bond Valuation Models," Financial Management, Financial Management Association International, vol. 39(2), pages 675-706, June.
    5. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    6. Zhou, Qi-Yuan & Wu, Chong-Feng & Feng, Yun, 2007. "Decomposing and valuing callable convertible bonds: a new method based on exotic options," MPRA Paper 7421, University Library of Munich, Germany.
    7. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    8. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    9. Feng, Yun & Huang, Bing-hua & Young, Martin & Zhou, Qi-yuan, 2015. "Decomposing and valuing convertible bonds: A new method based on exotic options," Economic Modelling, Elsevier, vol. 47(C), pages 193-206.
    10. Kim, Byung-June & Jang, Bong-Gyu, 2021. "Convertible bond valuation with regime switching," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Applied Economics and Finance, Redfame publishing, vol. 9(3), pages 55-68, August.
    12. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Alex W.H. Chan & Nai-fu Chen, 2006. "Convertible Bond Underpricing: Renegotiable Covenants, Seasoning and Convergence," CIRJE F-Series CIRJE-F-437, CIRJE, Faculty of Economics, University of Tokyo.
    17. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    18. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    19. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    20. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.

    More about this item

    Keywords

    Convertible bonds; Generative adversarial network; Time-series simulation; Pricing; Investment strategy; Artificial intelligence;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:8:y:2022:i:1:d:10.1186_s40854-022-00369-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.