IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v11y2025i1d10.1186_s40854-024-00729-w.html
   My bibliography  Save this article

Estimation of the probability of informed trading models via an expectation-conditional maximization algorithm

Author

Listed:
  • Montasser Ghachem

    (Stockholm University)

  • Oguz Ersan

    (Kadir Has University)

Abstract

The estimation of the probability of informed trading (PIN) model and its extensions poses significant challenges owing to various computational problems. To address these issues, we propose a novel estimation method called the expectation-conditional-maximization (ECM) algorithm, which can serve as an alternative to the existing methods for estimating PIN models. Our method provides optimal estimates for the original PIN model as well as two of its extensions: the multilayer PIN model and the adjusted PIN model, along with its restricted versions. Our results indicate that estimations using the ECM algorithm are generally faster, more accurate, and more memory-efficient than the standard methods used in the literature, making it a robust alternative. More importantly, the ECM algorithm is not limited to the models discussed and can be easily adapted to estimate future extensions of the PIN model.

Suggested Citation

  • Montasser Ghachem & Oguz Ersan, 2025. "Estimation of the probability of informed trading models via an expectation-conditional maximization algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-37, December.
  • Handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-024-00729-w
    DOI: 10.1186/s40854-024-00729-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-024-00729-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-024-00729-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oguz Ersan & Montasser Ghachem, 2024. "Identifying Information Types in the Estimation of Informed Trading: An Improved Algorithm," JRFM, MDPI, vol. 17(9), pages 1-20, September.
    2. Easley, David & Hvidkjaer, Soeren & O’Hara, Maureen, 2010. "Factoring Information into Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 293-309, April.
    3. Duarte, Jefferson & Hu, Edwin & Young, Lance, 2020. "A comparison of some structural models of private information arrival," Journal of Financial Economics, Elsevier, vol. 135(3), pages 795-815.
    4. Quan Gan & Wang Chun Wei & David Johnstone, 2015. "A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1805-1821, November.
    5. Griffin, Jim & Oberoi, Jaideep & Oduro, Samuel D., 2021. "Estimating the probability of informed trading: A Bayesian approach," Journal of Banking & Finance, Elsevier, vol. 125(C).
    6. Yan, Yuxing & Zhang, Shaojun, 2012. "An improved estimation method and empirical properties of the probability of informed trading," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 454-467.
    7. William Lin, Hsiou-Wei & Ke, Wen-Chyan, 2011. "A computing bias in estimating the probability of informed trading," Journal of Financial Markets, Elsevier, vol. 14(4), pages 625-640, November.
    8. Cheng-Few Lee & John C. Lee (ed.), 2015. "Handbook of Financial Econometrics and Statistics," Springer Books, Springer, edition 127, number 978-1-4614-7750-1, March.
    9. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu-Lan Michael Kao & Emily Lin, 2023. "A new PIN model with application of the change-point detection method," Review of Quantitative Finance and Accounting, Springer, vol. 61(4), pages 1513-1528, November.
    2. Emily Lin & Chu-Lan Michael Kao & Natasha Sonia Adityarini, 2021. "Data-driven tree structure for PIN models," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 411-427, August.
    3. Ersan, Oguz & Alıcı, Aslı, 2016. "An unbiased computation methodology for estimating the probability of informed trading (PIN)," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 74-94.
    4. Griffin, Jim & Oberoi, Jaideep & Oduro, Samuel D., 2021. "Estimating the probability of informed trading: A Bayesian approach," Journal of Banking & Finance, Elsevier, vol. 125(C).
    5. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    6. Thomas Pöppe & Michael Aitken & Dirk Schiereck & Ingo Wiegand, 2016. "A PIN per day shows what news convey: the intraday probability of informed trading," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1187-1220, November.
    7. Cosmin Octavian Cepoi & Victor Dragotă & Ruxandra Trifan & Andreea Iordache, 2023. "Probability of informed trading during the COVID-19 pandemic: the case of the Romanian stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    8. Lof, Matthijs & Bommel, Jos van, 2018. "Asymmetric information and the distribution of trading volume," Research Discussion Papers 1, Bank of Finland.
    9. repec:zbw:bofrdp:001 is not listed on IDEAS
    10. Schreder, Max, 2018. "Idiosyncratic information and the cost of equity capital: A meta-analytic review of the literature," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 142-172.
    11. David Abad & M. Fuensanta Cutillas†Gomariz & Juan Pedro Sánchez†Ballesta & José Yagüe, 2018. "Does IFRS Mandatory Adoption Affect Information Asymmetry in the Stock Market?," Australian Accounting Review, CPA Australia, vol. 28(1), pages 61-78, March.
    12. Jackson, David, 2013. "Estimating PIN for firms with high levels of trading," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 116-120.
    13. Kitamura, Yoshihiro, 2016. "The probability of informed trading measured with price impact, price reversal, and volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 77-90.
    14. Bhurjee, Keerat & Saragur Ramanna, Vishwanatha, 2024. "Preopening auctions and price discovery in initial public offerings," Journal of Banking & Finance, Elsevier, vol. 165(C).
    15. Sankaraguruswamy, Srinivasan & Shen, Jianfeng & Yamada, Takeshi, 2013. "The relationship between the frequency of news release and the information asymmetry: The role of uninformed trading," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4134-4143.
    16. Tiniç, Murat & Savaser, Tanseli, 2020. "Political turmoil and the impact of foreign orders on equity prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    17. repec:zbw:bofrdp:2018_001 is not listed on IDEAS
    18. Malinova, Katya & Park, Andreas, 2014. "The impact of competition and information on intraday trading," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 55-71.
    19. Yan, Yuxing & Zhang, Shaojun, 2014. "Quality of PIN estimates and the PIN-return relationship," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 137-149.
    20. Kropiński, Paweł & Bosek, Bartłomiej & Pudo, Mikołaj, 2024. "State ownership, probability of informed trading, and profitability potential: Evidence from the Warsaw Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    21. Ke, Wen-Chyan & Chen, Hueiling & Lin, Hsiou-Wei William, 2019. "A note of techniques that mitigate floating-point errors in PIN estimation," Finance Research Letters, Elsevier, vol. 31(C).
    22. Kim, Sangwan & Lim, Steve C., 2017. "Earnings comparability and informed trading," Finance Research Letters, Elsevier, vol. 20(C), pages 130-136.

    More about this item

    Keywords

    Expectation conditional-maximization algorithm; ECM; PIN model; MPIN; Multilayer probability of informed trading; Adjusted PIN model; Maximum-likelihood estimation; Private information; Information asymmetry;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-024-00729-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.