IDEAS home Printed from https://ideas.repec.org/a/spr/eujhec/v17y2016i8d10.1007_s10198-015-0731-8.html
   My bibliography  Save this article

Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results

Author

Listed:
  • Theodoros Mantopoulos

    (University of Bristol)

  • Paul M. Mitchell

    (University of Birmingham)

  • Nicky J. Welton

    (University of Bristol)

  • Richard McManus

    (University of Oxford)

  • Lazaros Andronis

    (University of Birmingham)

Abstract

Context Statistical models employed in analysing patient-level cost and effectiveness data need to be flexible enough to adjust for any imbalanced covariates, account for correlations between key parameters, and accommodate potential skewed distributions of costs and/or effects. We compare prominent statistical models for cost-effectiveness analysis alongside randomised controlled trials (RCTs) and covariate adjustment to assess their performance and accuracy using data from a large RCT. Method Seemingly unrelated regressions, linear regression of net monetary benefits, and Bayesian generalized linear models with various distributional assumptions were used to analyse data from the TASMINH2 trial. Each model adjusted for covariates prognostic of costs and outcomes. Results Cost-effectiveness results were notably sensitive to model choice. Models assuming normally distributed costs and effects provided a poor fit to the data, and potentially misleading inference. Allowing for a beta distribution captured the true incremental difference in effects and changed the decision as to which treatment is preferable. Conclusions Our findings suggest that Bayesian generalized linear models which allow for non-normality in estimation offer an attractive tool for researchers undertaking cost-effectiveness analyses. The flexibility provided by such methods allows the researcher to analyse patient-level data which are not necessarily normally distributed, while at the same time it enables assessing the effect of various baseline covariates on cost-effectiveness results.

Suggested Citation

  • Theodoros Mantopoulos & Paul M. Mitchell & Nicky J. Welton & Richard McManus & Lazaros Andronis, 2016. "Choice of statistical model for cost-effectiveness analysis and covariate adjustment: empirical application of prominent models and assessment of their results," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 927-938, November.
  • Handle: RePEc:spr:eujhec:v:17:y:2016:i:8:d:10.1007_s10198-015-0731-8
    DOI: 10.1007/s10198-015-0731-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10198-015-0731-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10198-015-0731-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew R. Willan & Andrew H. Briggs & Jeffrey S. Hoch, 2004. "Regression methods for covariate adjustment and subgroup analysis for non‐censored cost‐effectiveness data," Health Economics, John Wiley & Sons, Ltd., vol. 13(5), pages 461-475, May.
    2. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    3. Anthony O’Hagan & John W. Stevens, 2001. "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness," Medical Decision Making, , vol. 21(3), pages 219-230, May.
    4. Anirban Basu, 2005. "Extended generalized linear models: Simultaneous estimation of flexible link and variance functions," Stata Journal, StataCorp LP, vol. 5(4), pages 501-516, December.
    5. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    6. Andrea Manca & Neil Hawkins & Mark J. Sculpher, 2005. "Estimating mean QALYs in trial‐based cost‐effectiveness analysis: the importance of controlling for baseline utility," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 487-496, May.
    7. Anirban Basu & Andrea Manca, 2012. "Regression Estimators for Generic Health-Related Quality of Life and Quality-Adjusted Life Years," Medical Decision Making, , vol. 32(1), pages 56-69, January.
    8. Richard M. Nixon & Simon G. Thompson, 2005. "Methods for incorporating covariate adjustment, subgroup analysis and between‐centre differences into cost‐effectiveness evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 14(12), pages 1217-1229, December.
    9. Drummond, Michael F. & Sculpher, Mark J. & Torrance, George W. & O'Brien, Bernie J. & Stoddart, Greg L., 2005. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 3, number 9780198529453.
    10. Kenneth F Schulz & Douglas G Altman & David Moher & for the CONSORT Group, 2010. "CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials," PLOS Medicine, Public Library of Science, vol. 7(3), pages 1-7, March.
    11. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    12. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    13. F. J. Vázquez‐Polo & M. A. Negrín Hernández & B. González López‐Valcárcel, 2005. "Using covariates to reduce uncertainty in the economic evaluation of clinical trial data," Health Economics, John Wiley & Sons, Ltd., vol. 14(6), pages 545-557, June.
    14. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    15. Anthony O'Hagan & John W. Stevens, 2003. "Assessing and comparing costs: how robust are the bootstrap and methods based on asymptotic normality?," Health Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 33-49, January.
    16. Andrew H. Briggs, 1999. "A Bayesian approach to stochastic cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 257-261, May.
    17. Manning, Willard G. & Mullahy, John, 2001. "Estimating log models: to transform or not to transform?," Journal of Health Economics, Elsevier, vol. 20(4), pages 461-494, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc d’Elbée & Fern Terris-Prestholt & Andrew Briggs & Ulla Kou Griffiths & Joseph Larmarange & Graham Francis Medley & Gabriella Beatriz Gomez, 2023. "Estimating health care costs at scale in low‐ and middle‐income countries: Mathematical notations and frameworks for the application of cost functions," Post-Print hal-04133193, HAL.
    2. Manju, Md Abu & Candel, Math J.J.M. & van Breukelen, Gerard J.P., 2021. "Robustness of cost-effectiveness analyses of cluster randomized trials assuming bivariate normality against skewed cost data," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brandon K. Bellows & Yue Zhang & Zugui Zhang & Paul Kolm & William S. Weintraub & Andrew S. Moran & Jincheng Shen, 2022. "An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest," Papers 2204.10971, arXiv.org.
    4. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Gomes & Richard Grieve & Richard Nixon & W. J. Edmunds, 2012. "Statistical Methods for Cost-Effectiveness Analyses That Use Data from Cluster Randomized Trials," Medical Decision Making, , vol. 32(1), pages 209-220, January.
    2. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    3. Negri­n, Miguel A. & Vázquez-Polo, Francisco-José, 2008. "Incorporating model uncertainty in cost-effectiveness analysis: A Bayesian model averaging approach," Journal of Health Economics, Elsevier, vol. 27(5), pages 1250-1259, September.
    4. McCarthy, Ian M., 2016. "Eliminating composite bias in treatment effects estimates: Applications to quality of life assessment," Journal of Health Economics, Elsevier, vol. 50(C), pages 47-58.
    5. Mohamed El Alili & Johanna M. van Dongen & Jonas L. Esser & Martijn W. Heymans & Maurits W. van Tulder & Judith E. Bosmans, 2022. "A scoping review of statistical methods for trial‐based economic evaluations: The current state of play," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2680-2699, December.
    6. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    7. Moreno, E. & Girón, F.J. & Martínez, M.L. & Vázquez-Polo, F.J. & Negrín, M.A., 2013. "Optimal treatments in cost-effectiveness analysis in the presence of covariates: Improving patient subgroup definition," European Journal of Operational Research, Elsevier, vol. 226(1), pages 173-182.
    8. Ilias Goranitis & Joanna Coast & Ed Day & Alex Copello & Nick Freemantle & Emma Frew, 2017. "Maximizing Health or Sufficient Capability in Economic Evaluation? A Methodological Experiment of Treatment for Drug Addiction," Medical Decision Making, , vol. 37(5), pages 498-511, July.
    9. Peter Makai & Willemijn Looman & Eddy Adang & René Melis & Elly Stolk & Isabelle Fabbricotti, 2015. "Cost-effectiveness of integrated care in frail elderly using the ICECAP-O and EQ-5D: does choice of instrument matter?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(4), pages 437-450, May.
    10. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    11. Abualbishr Alshreef & Allan J. Wailoo & Steven R. Brown & James P. Tiernan & Angus J. M. Watson & Katie Biggs & Mike Bradburn & Daniel Hind, 2017. "Cost-Effectiveness of Haemorrhoidal Artery Ligation versus Rubber Band Ligation for the Treatment of Grade II–III Haemorrhoids: Analysis Using Evidence from the HubBLe Trial," PharmacoEconomics - Open, Springer, vol. 1(3), pages 175-184, September.
    12. Rachael Hunter & Gianluca Baio & Thomas Butt & Stephen Morris & Jeff Round & Nick Freemantle, 2015. "An Educational Review of the Statistical Issues in Analysing Utility Data for Cost-Utility Analysis," PharmacoEconomics, Springer, vol. 33(4), pages 355-366, April.
    13. Ian M. McCarthy, 2015. "Putting the Patient in Patient Reported Outcomes: A Robust Methodology for Health Outcomes Assessment," Health Economics, John Wiley & Sons, Ltd., vol. 24(12), pages 1588-1603, December.
    14. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    15. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
    16. Richard M. Nixon & David Wonderling & Richard D. Grieve, 2010. "Non‐parametric methods for cost‐effectiveness analysis: the central limit theorem and the bootstrap compared," Health Economics, John Wiley & Sons, Ltd., vol. 19(3), pages 316-333, March.
    17. Andrew R. Willan & Matthew E. Kowgier, 2008. "Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate," Health Economics, John Wiley & Sons, Ltd., vol. 17(7), pages 777-791, July.
    18. Carmen Selva-Sevilla & Elena Conde-Montero & Manuel Gerónimo-Pardo, 2020. "Bayesian Regression Model for a Cost-Utility and Cost-Effectiveness Analysis Comparing Punch Grafting Versus Usual Care for the Treatment of Chronic Wounds," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    19. Gomes, M & Grieve, R, 2011. "Estimating the Effects of Friendship Networks on Health Behaviors of Adolescents," Health, Econometrics and Data Group (HEDG) Working Papers 11/14, HEDG, c/o Department of Economics, University of York.
    20. Francisco-José Polo & Miguel Negrín & Xavier Badía & Montse Roset, 2005. "Bayesian regression models for cost-effectiveness analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(1), pages 45-52, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eujhec:v:17:y:2016:i:8:d:10.1007_s10198-015-0731-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.