IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v18y2016i3d10.1007_s10018-016-0150-9.html
   My bibliography  Save this article

Environmental amenities as a renewable resource: management and conflicts

Author

Listed:
  • George E. Halkos

    (University of Thessaly)

  • George J. Papageorgiou

    (University of Thessaly)

Abstract

The major assumption made in this paper, is that the environment offers at large two distinct services each of different kind. First, the environmental resources may serve as inputs to the production of conventional goods. An example is the exploitation of an oil source from which, one firm extracts the oil which in turn is used as a fossil fuel for an industry. In the worst case, the use of the natural resources for industrial purposes will negatively affect the environment, e.g. the air quality over an industrial area. Nevertheless, saving abatement costs, production cost decreases due to possibility to pollute. Therefore, this first environmental service is evaluated positively by the economic agents (firms and consumers). The second service provided is the environment itself which offers amenities (i.e. clean air, blue coasts, natural creeks, clean rivers and lakes etc.) The crucial difference between the uses of the above services is how environmental quality affected and how much is the environmental degradation. From the pure economic point of view, the uses of the environmental services are consumptive and non-consumptive. Conversely in natural resources means, the environmental stock may be used as a raw material for the industrial production of conventional goods providing simultaneously a positive externality. Hence, the main purpose of this paper is twofold. First it considers the management at which the social planer has to steer emissions in an optimal way, meaning that both environmental quality and stock of pollutants remain optimal. Second it considers the conflict between the representative polluting producer and the representative environmental quality enjoyer which actually abates. In both cases we explore the complex limit cycle equilibrium, but additionally in the second case the analytical expressions of the crucial variables of the model are computed.

Suggested Citation

  • George E. Halkos & George J. Papageorgiou, 2016. "Environmental amenities as a renewable resource: management and conflicts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 303-325, July.
  • Handle: RePEc:spr:envpol:v:18:y:2016:i:3:d:10.1007_s10018-016-0150-9
    DOI: 10.1007/s10018-016-0150-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-016-0150-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-016-0150-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jue Yang & Shunsuke Managi & Masayuki Sato, 2015. "The effect of institutional quality on national wealth: an examination using multiple imputation method," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 431-453, July.
    2. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    3. Y. Farzin & K. Akao, 2015. "Poverty, social preference for employment, and natural resource depletion," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 1-26, January.
    4. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    5. Xepapadeas, A. P., 1992. "Environmental policy design and dynamic nonpoint-source pollution," Journal of Environmental Economics and Management, Elsevier, vol. 23(1), pages 22-39, July.
    6. Wirl Franz, 1995. "The Cyclical Exploitation of Renewable Resource Stocks May Be Optimal," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 252-261, September.
    7. Forster, Bruce A., 1980. "Optimal energy use in a polluted environment," Journal of Environmental Economics and Management, Elsevier, vol. 7(4), pages 321-333, December.
    8. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    9. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329.
    10. Clark, Colin W & Clarke, Frank H & Munro, Gordon R, 1979. "The Optimal Exploitation of Renewable Resource Stocks: Problems of Irreversible Investment," Econometrica, Econometric Society, vol. 47(1), pages 25-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh Sharma & Surendra Singh Rajpurohit, 2022. "Nexus between income inequality and consumption of renewable energy in India: a nonlinear examination," Economic Change and Restructuring, Springer, vol. 55(4), pages 2337-2358, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & George Papageorgiou, 2014. "Exploring the optimality of cyclical emission rates," DEOS Working Papers 1404, Athens University of Economics and Business.
    2. Halkos, George & Papageorgiou, George, 2017. "Public debt, corruption and tax evasion: Nash and Stackelberg equilibria," MPRA Paper 77519, University Library of Munich, Germany.
    3. Halkos, George E. & Papageorgiou, George J., 2018. "Pollution, environmental taxes and public debt: A game theory setup," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 111-120.
    4. Halkos, George & Papageorgiou, George, 2017. "Public debt, pollution and environmental taxes: Nash and Stackelberg equilibria," MPRA Paper 81982, University Library of Munich, Germany.
    5. Halkos, George & Papageorgiou, George, 2016. "Public bad conflicts: Cyclical Nash strategies and Stackelberg solutions," MPRA Paper 70635, University Library of Munich, Germany.
    6. Halkos, George E. & Papageorgiou, George J. & Halkos, Emmanuel G. & Papageorgiou, John G., 2020. "Public debt games with corruption and tax evasion," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 250-261.
    7. Halkos, George, 2011. "Prevention of stock accumulation by restricting polluters’ resources," MPRA Paper 30466, University Library of Munich, Germany.
    8. Dawid, Herbert & Keoula, Michel Y. & Kopel, Michael & Kort, Peter M., 2015. "Product innovation incentives by an incumbent firm: A dynamic analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 411-438.
    9. Halkos, George & Papageorgiou, George, 2013. "Dynamic modeling of pulse fishing: A game theoretic approach," MPRA Paper 47871, University Library of Munich, Germany.
    10. Athanassoglou, Stergios, 2010. "Dynamic nonpoint-source pollution control policy: Ambient transfers and uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2494-2509, December.
    11. Wirl, Franz, 2004. "Thresholds in concave renewable resource models," Ecological Economics, Elsevier, vol. 48(2), pages 259-267, February.
    12. Fenichel, Eli P. & Horan, Richard D. & Bence, James R., 2010. "Indirect management of invasive species through bio-controls: A bioeconomic model of salmon and alewife in Lake Michigan," Resource and Energy Economics, Elsevier, vol. 32(4), pages 500-518, November.
    13. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    14. Niko Jaakkola & Florian Wagener, 2020. "All symmetric equilibria in differential games with public goods," Tinbergen Institute Discussion Papers 20-020/II, Tinbergen Institute.
    15. Javier Frutos & Guiomar Martín-Herrán, 2018. "Selection of a Markov Perfect Nash Equilibrium in a Class of Differential Games," Dynamic Games and Applications, Springer, vol. 8(3), pages 620-636, September.
    16. Chen Ling & Michael Caputo, 2012. "The Envelope Theorem for Locally Differentiable Nash Equilibria of Discounted and Autonomous Infinite Horizon Differential Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 313-334, September.
    17. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    18. Insley, Margaret & A. Forsyth, Peter, 2019. "Climate games: Who’s on first? What’s on second?," L'Actualité Economique, Société Canadienne de Science Economique, vol. 95(2-3), pages 287-322, Juin-Sept.
    19. Melstrom, Richard T., 2015. "Cyclical harvesting in fisheries with bycatch," Resource and Energy Economics, Elsevier, vol. 42(C), pages 1-15.
    20. Ekaterina Marova & Ekaterina Gromova & Polina Barsuk & Anastasia Shagushina, 2020. "On the Effect of the Absorption Coefficient in a Differential Game of Pollution Control," Mathematics, MDPI, vol. 8(6), pages 1-24, June.

    More about this item

    Keywords

    Renewable resources; Environmental economics; Pollution;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:18:y:2016:i:3:d:10.1007_s10018-016-0150-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.