IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i1d10.1007_s10668-023-03977-5.html
   My bibliography  Save this article

Water yield of the Volta Basin under future land use and climate change

Author

Listed:
  • Daniel Mawuko Ocloo

    (University of Tsukuba)

Abstract

With rapid land use land cover (LULC) and climate change, it is important to study the performance of basins in terms of water yield under future LULC and climate change. Studies of the Volta Basin on water yield have been conducted at the sub-basin level, but a global-scale study has not been fully explored. The study used the InVEST tool to analyze the Volta Basin's water yield based on past and future LULC and shared socioeconomic pathway scenarios. The CA–Markov model simulated land use changes for 2030 and 2040. From 1985 to 2020, built-up areas, croplands, and open forests increased, while grasslands, shrublands, and closed forests decreased. The predicted LULC indicates increased croplands, built-up areas, open forests, and bare areas from 1985 to 2040. Grassland, closed forest, and shrubland areas decreased. Precipitation was highest under SSP2-4.5 and lowest under SSP5-8.5, while temperature and PET peaked under SSP3-7.0 and dipped under SSP2-4.5. Annual water yield increased from 1985 to 2020, with the highest in 2020 and lowest in 1995. Water land use contributed most to mean water yield, while grassland contributed the least under all SSPs. SSP1-2.6 and SSP5-8.5 recorded the highest and lowest yields respectively. The southern sub-basins had the highest values. Precipitation positively correlated (0.56) with water yield, while temperature (0.42) and PET (0.46) negatively correlated. Spatial water yield results can highlight vulnerable areas, guide management, and shape adaptation measures. It also shows InVEST's effectiveness in modeling the Volta Basin's water yield.

Suggested Citation

  • Daniel Mawuko Ocloo, 2025. "Water yield of the Volta Basin under future land use and climate change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2523-2548, January.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03977-5
    DOI: 10.1007/s10668-023-03977-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03977-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03977-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siabi, E. K. & Phuong, D. N. D. & Kabobah, A. T. & Akpoti, Komlavi & Anornu, G. & Incoom, A. B. M. & Nyantakyi, E. K. & Yeboah, K. A. & Siabi, S. E. & Vuu, C. & Domfeh, M. K. & Mortey, E. M. & Wemegah, 2023. "Projections and impact assessment of the local climate change conditions of the Black Volta Basin of Ghana based on the Statistical DownScaling Model," Papers published in Journals (Open Access), International Water Management Institute, pages 14(2):494-5.
    2. Joachim Ayiiwe Abungba & Kwaku Amaning Adjei & Charles Gyamfi & Samuel Nii Odai & Santosh Murlidhar Pingale & Deepak Khare, 2022. "Implications of Land Use/Land Cover Changes and Climate Change on Black Volta Basin Future Water Resources in Ghana," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Ting Zhang & Qian Gao & Huaming Xie & Qianjiao Wu & Yuwen Yu & Chukun Zhou & Zixian Chen & Hanqing Hu, 2022. "Response of Water Yield to Future Climate Change Based on InVEST and CMIP6—A Case Study of the Chaohu Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    4. Song, Wei & Deng, Xiangzheng & Yuan, Yongwei & Wang, Zhan & Li, Zhaohua, 2015. "Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain," Ecological Modelling, Elsevier, vol. 318(C), pages 245-253.
    5. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    4. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    5. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    6. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    7. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    8. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    9. Liu, Jing-Yue & Lei, Quan & Li, Ruojin & Zhang, Yue-Jun, 2024. "Resistance or motivation? Impact of climate risk on corporate greenwashing: An empirical study of Chinese enterprises," Global Finance Journal, Elsevier, vol. 62(C).
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    12. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    13. Zhao, Zhe & Bai, Yuping & Wang, Guofeng & Chen, Jiancheng & Yu, Jiangli & Liu, Wei, 2018. "Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 19-26.
    14. Chepeliev, Maksym & Osorio-Rodarte, Israel & van der Mensbrugghe, Dominique, 2021. "Distributional impacts of carbon pricing policies under the Paris Agreement: Inter and intra-regional perspectives," Energy Economics, Elsevier, vol. 102(C).
    15. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    16. Garaffa, Rafael & Gurgel, Angelo & Cunha, Bruno & Lucena, Andre & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro, 2018. "Climate finance under a CGE framework: decoupling financial flows in GTAP database," Conference papers 332939, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & You, Shijun, 2024. "Pump-stopping-induced hydraulic oscillations in long-distance district heating system: Modelling and a comprehensive analysis of critical factors," Energy, Elsevier, vol. 294(C).
    19. Jun U. Shepard & Bas J. van Ruijven & Behnam Zakeri, 2022. "Impacts of Trade Friction and Climate Policy on Global Energy Trade Network," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03977-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.