IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03262-5.html
   My bibliography  Save this article

Mapping groundwater’s susceptibility to pollution in the Triffa Plain (Eastern Morocco) using a modified method based on the DRASTIC, RIVA, and AHP models

Author

Listed:
  • Sofia Ourarhi

    (Université Mohammed Premier Oujda)

  • Alae-Eddine Barkaoui

    (Université Mohammed Premier Oujda)

  • Yassine Zarhloule

    (Université Mohammed Premier Oujda)

Abstract

Groundwater resources in arid and semiarid regions suffering from low precipitation, high temperatures, and high evaporation rates associated with anthropogenic stresses require appropriate and careful management to maintain water quality in the present and future. In this context, assessing the intrinsic vulnerability of the Triffa Plain phreatic aquifer is crucial to preserve the groundwater. In this study, we proceeded to the hydrogeological parameters' mapping and the inherent vulnerability evaluation using the classical DRASTIC method. In addition, we studied the reliability of estimating the recharge parameter by a qualitative approach. The study combines the DRASTIC, RIVA, and AHP techniques to improve and simplify the evaluation of the vulnerability of groundwater in agricultural areas. The AHP method weighed the parameters according to their relevance to the aquifer vulnerability process. The modified method can solve incomplete data problems, especially in agricultural areas where irrigation return flows are the major contributor to groundwater recharge. The DRASTIC and DRASTIC R-modified results delineated four regions, from extremely low to high sensitivity levels in the area. In comparison with the spatial distribution of nitrates and the original DRASTIC method, the DRASTIC R-modified method represents a realistic assessment with 12% (low), 78% (medium), and 10% (high) of the total area. Similarly, concerning the original DRASTIC method, the low vulnerability is 14%, medium 76%, and high 9%. The results were successfully validated with the spatial distribution and bivariate correlation whit nitrate concentrations. These findings highlight the robustness of incorporating a qualitative recharge parameter within the DRASTIC model, considering irrigation impact, rainfall intensity, and quantity. The obtained results provide an indispensable tool for decision-makers and managers to conceive timely protection and monitoring measures for groundwater resources.

Suggested Citation

  • Sofia Ourarhi & Alae-Eddine Barkaoui & Yassine Zarhloule, 2024. "Mapping groundwater’s susceptibility to pollution in the Triffa Plain (Eastern Morocco) using a modified method based on the DRASTIC, RIVA, and AHP models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15535-15555, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03262-5
    DOI: 10.1007/s10668-023-03262-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03262-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03262-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mimoun Boughriba & Abdelhakim Jilali, 2018. "Climate change and modeling of an unconfined aquifer: the Triffa plain, Morocco," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2009-2026, October.
    2. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Saidi, S. & Bouri, S. & Ben Dhia, H. & Anselme, B., 2011. "Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: Application to Souassi aquifer, Tunisian Sahel," Agricultural Water Management, Elsevier, vol. 98(10), pages 1671-1682, August.
    5. Yibo Zhang & Hao Qin & Guanping An & Tao Huang, 2022. "Vulnerability Assessment of Farmland Groundwater Pollution around Traditional Industrial Parks Based on the Improved DRASTIC Model—A Case Study in Shifang City, Sichuan Province, China," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Saheed Adeyinka Oke, 2020. "Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria," IJERPH, MDPI, vol. 17(7), pages 1-17, April.
    3. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    4. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    5. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    6. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    7. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    8. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    9. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    10. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    11. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    12. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    13. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    14. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    15. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    16. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    17. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    18. Sadiq Ullah & Mudassar Iqbal & Muhammad Waseem & Adnan Abbas & Muhammad Masood & Ghulam Nabi & Muhammad Atiq Ur Rehman Tariq & Muhammad Sadam, 2024. "Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    19. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    20. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03262-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.