IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03335-5.html
   My bibliography  Save this article

Prediction and modeling of water quality using deep neural networks

Author

Listed:
  • Marwa El-Shebli

    (Oklahoma State University)

  • Yousef Sharrab

    (Isra University)

  • Dimah Al-Fraihat

    (Isra University)

Abstract

Water pollution is one of the most challenging environmental issues. A powerful tool for measuring the suitability of water for drinking is required. The Water Quality Index (WQI) is a widely used parameter for the assessment of water quality through mathematical formulas. In this paper, a Deep Neural Network (DNN) model is developed to forecast WQI based on parameters selected for the dry and wet seasons throughout the year. Statistical modeling and unsupervised machine learning techniques are used. These modelings include the Principal Component Analysis/Factor Analysis (PCA/FA) which is used to interpret seasonal changes and the sources of springs under study. The other modeling technique utilized in this study is the Hierarchical Cluster Analysis (HCA). The results of this study reveal that the developed DNN model has achieved a high accuracy of ***. The goodness of fit of the developed model using R-Squared (R2) is 0.98 which is deemed high. The Mean Square Error metric is close to zero. Furthermore, the PCA/FA revealed five major parameters that impact water quality which together account for 92% of the total variance of water quality in summer and 96% in winter. Moreover, results show that the average of the WQI for all springs is of poor water quality at 46.75% during the dry season and medium water quality at 55.5% during the wet season.

Suggested Citation

  • Marwa El-Shebli & Yousef Sharrab & Dimah Al-Fraihat, 2024. "Prediction and modeling of water quality using deep neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11397-11430, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03335-5
    DOI: 10.1007/s10668-023-03335-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03335-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03335-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fischer, Manfred M., 2006. "Neural Networks. A General Framework for Non-Linear Function Approximation," MPRA Paper 77776, University Library of Munich, Germany.
    2. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    3. Margaret W. Gitau & Jingqiu Chen & Zhao Ma, 2016. "Water Quality Indices as Tools for Decision Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2591-2610, June.
    4. Colin Cameron, A. & Windmeijer, Frank A. G., 1997. "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics, Elsevier, vol. 77(2), pages 329-342, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Mostafa Bigdeli & Mahsa Akbari, 2024. "Machine-learning-based Classification of Customers’ Behavioural Model in Instagram," Paradigm, , vol. 28(2), pages 223-240, December.
    3. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    4. Najla Alharbi & Bashayer Alkalifah & Ghaida Alqarawi & Murad A. Rassam, 2024. "Countering Social Media Cybercrime Using Deep Learning: Instagram Fake Accounts Detection," Future Internet, MDPI, vol. 16(10), pages 1-22, October.
    5. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    6. Burkey, Mark L. & Obeng, Kofi, 2005. "Crash Risk Reduction at Signalized Intersections Using Longitudinal Data," MPRA Paper 36281, University Library of Munich, Germany.
    7. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    8. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    9. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    10. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    11. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    12. Hiau LooiKee & Alessandro Nicita & Marcelo Olarreaga, 2009. "Estimating Trade Restrictiveness Indices," Economic Journal, Royal Economic Society, vol. 119(534), pages 172-199, January.
    13. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    14. Dabao Zhang, 2022. "Coefficients of Determination for Mixed-Effects Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 674-689, December.
    15. Wam, Hilde Karine & Pedersen, Hans Chr. & Hjeljord, Olav, 2012. "Balancing hunting regulations and hunter satisfaction: An integrated biosocioeconomic model to aid in sustainable management," Ecological Economics, Elsevier, vol. 79(C), pages 89-96.
    16. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    17. Jaimovich, Dany, 2015. "Missing Links, Missing Markets: Evidence of the Transformation Process in the Economic Networks of Gambian Villages," World Development, Elsevier, vol. 66(C), pages 645-664.
    18. Joshua Holstein & Max Schemmer & Johannes Jakubik & Michael Vössing & Gerhard Satzger, 2023. "Sanitizing data for analysis: Designing systems for data understanding," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-18, December.
    19. Sanghamitra Bandyopadhyay & Frank A. Cowell & Emmanual Flachaire, 2009. "Goodness-of-Fit: An Economic Approach," Economics Series Working Papers 444, University of Oxford, Department of Economics.
    20. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03335-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.