IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-03028-z.html
   My bibliography  Save this article

Optimal planning of biofuel supply chains incorporating temporality of unconventional bioresources

Author

Listed:
  • Pascual Eduardo Murillo-Alvarado

    (Universidad de La Ciénega del Estadode Michoacán de Ocampo)

  • José María Ponce-Ortega

    (Universidad Michoacana de San Nicolás de Hidalgo)

Abstract

Most biofuels today come from sources that have some relationship with products of the human diet, which has generated controversy regarding their feasibility for industrial-scale production. This work presents a mathematical optimization model for installing bioethanol and biodiesel processing plants involving unconventional bioresources. The considered bioresources are not part of the human diet. The proposed mathematical model considers the maximization of the annual profit considering the installation of biofuel plants and the distribution of these biofuels in areas that present a greater demand for gasoline or diesel to replace fossil fuels. A case study from Mexico was considered since its wide biodiversity. The first scenario presents the optimal solution where there is high feasibility of bioethanol and biodiesel production, obtaining a production of 8.14 × 107 L/year and 2.18 × 108 L/year, respectively. In addition, the feasibility is shown considering the variation in the temporality of the availability of the bioresources for the generation of biofuels. The proposed model is flexible, and it can be used to analyze other case studies.

Suggested Citation

  • Pascual Eduardo Murillo-Alvarado & José María Ponce-Ortega, 2024. "Optimal planning of biofuel supply chains incorporating temporality of unconventional bioresources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7715-7733, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03028-z
    DOI: 10.1007/s10668-023-03028-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03028-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03028-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Amador Honorato-Salazar & Jorge Aburto & Myriam Adela Amezcua-Allieri, 2021. "Agave and Opuntia Species as Sustainable Feedstocks for Bioenergy and Byproducts," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    2. Taylor, Gail, 2008. "Biofuels and the biorefinery concept," Energy Policy, Elsevier, vol. 36(12), pages 4406-4409, December.
    3. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    4. Haroon ur Rashid Khan & Usama Awan & Khalid Zaman & Abdelmohsen A. Nassani & Mohamed Haffar & Muhammad Moinuddin Qazi Abro, 2021. "Assessing Hybrid Solar-Wind Potential for Industrial Decarbonization Strategies: Global Shift to Green Development," Energies, MDPI, vol. 14(22), pages 1-14, November.
    5. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    6. Usama Awan & Robert Sroufe & Karoly Bozan, 2022. "Designing Value Chains for Industry 4.0 and a Circular Economy: A Review of the Literature," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    7. Pandey, Vimal Chandra & Bajpai, Omesh & Singh, Nandita, 2016. "Energy crops in sustainable phytoremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 58-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    2. Narendra Singh Ranawat & Ayon Chakraborty, 2024. "The Impact of Third-Party Financial Products on the Consumer Loan Services Market in the Banking Sector: An Analysis of Sales Progress and Consumer Behavior," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 367-387, June.
    3. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.
    4. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    5. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
    7. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    8. María Belén Prados-Peña & Francisco Jesús Gálvez-Sánchez & Pedro Núñez-Cacho & Valentín Molina-Moreno, 2024. "Intention to purchase sustainable craft products: a moderated mediation analysis of the adoption of sustainability in the craft sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 775-797, January.
    9. Ruchi Chauhan & Arunava Majumder, 2025. "Involvement of carbon regulation in a smart dual-channel supply chain for customized products under uncertain environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 6997-7032, March.
    10. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    11. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    12. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    13. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    14. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    15. Rhisa Azaliah & Hengky Kurniawan & Djoni Hartono & Putu Angga Widyastaman, 2024. "The convergence of energy intensity in developing countries: a spatial econometric analysis with Indonesia’s provincial panel data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14915-14939, June.
    16. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    17. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    18. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    19. Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
    20. Walls, W.D. & Rusco, Frank & Kendix, Michael, 2011. "Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing," Energy Policy, Elsevier, vol. 39(7), pages 3999-4006, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03028-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.