IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i1d10.1007_s10668-022-02715-7.html
   My bibliography  Save this article

Environmental assessment of road freight transport services beyond the tank-to-wheels analysis based on LCA

Author

Listed:
  • Jose Luis Osorio-Tejada

    (Universidad Tecnológica de Pereira, Research Group in Territorial Environmental Management -GAT
    University of Warwick, School of Engineering)

  • Eva Llera-Sastresa

    (University of Zaragoza)

  • Sabina Scarpellini

    (University of Zaragoza)

Abstract

Reducing environmental impacts in transport motivates many studies to offer more sustainable freight services. However, most methodologies focus on impacts from fuel consumption, and approaches trying to integrate other transport components have not facilitated its application to actual and specific transport services. In this study, we present a harmonized approach to address the transport services with a holistic way to increase the knowledge about hotspots of the transport sector based on the life cycle assessment methodology. In this framework, vehicle manufacturing, fuel production, and infrastructure construction are the key transport components around the traffic process. Besides fuel usage, the operation and maintenance of vehicles and infrastructures are also included. We developed a tool to create the life cycle inventories for each transport component to be applied to specific transport services in any location with a comprehensive view and low uncertainty in the results. This approach was applied to road-freight services in Colombia, Malaysia, and Spain. The main results showed the nature and origin of the environmental impacts, which are highly influenced by the emissions control technologies, road characteristics, and traffic volume. The contribution of atmospheric pollutants per tonne-km can decrease by a quarter when Euro VI trucks on highways instead of conventional trucks on single-lane roads are used. However, these contributions are highly affected by fuel production due to the origin of biofuels. The proposed methodology provides relevant information to estimate transport impacts in the life cycle assessment of products with superior precision and identify strategies for systemically improving sustainability.

Suggested Citation

  • Jose Luis Osorio-Tejada & Eva Llera-Sastresa & Sabina Scarpellini, 2024. "Environmental assessment of road freight transport services beyond the tank-to-wheels analysis based on LCA," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 421-451, January.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02715-7
    DOI: 10.1007/s10668-022-02715-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02715-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02715-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azadi, Pooya & Brownbridge, George & Mosbach, Sebastian & Smallbone, Andrew & Bhave, Amit & Inderwildi, Oliver & Kraft, Markus, 2014. "The carbon footprint and non-renewable energy demand of algae-derived biodiesel," Applied Energy, Elsevier, vol. 113(C), pages 1632-1644.
    2. Jose Luis Osorio-Tejada & Eva Llera-Sastresa & Ahmad Hariza Hashim, 2018. "Well-to-Wheels Approach for the Environmental Impact Assessment of Road Freight Services," Sustainability, MDPI, vol. 10(12), pages 1-27, November.
    3. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    4. Soratana, Kullapa & Khanna, Vikas & Landis, Amy E., 2013. "Re-envisioning the renewable fuel standard to minimize unintended consequences: A comparison of microalgal diesel with other biodiesels," Applied Energy, Elsevier, vol. 112(C), pages 194-204.
    5. Nicholas Santero & Alexander Loijos & John Ochsendorf, 2013. "Greenhouse Gas Emissions Reduction Opportunities for Concrete Pavements," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 859-868, December.
    6. Vidal, Rosario & Moliner, Enrique & Martínez, Germán & Rubio, M. Carmen, 2013. "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 101-114.
    7. Collet, Pierre & Lardon, Laurent & Hélias, Arnaud & Bricout, Stéphanie & Lombaert-Valot, Isabelle & Perrier, Béatrice & Lépine, Olivier & Steyer, Jean-Philippe & Bernard, Olivier, 2014. "Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements," Renewable Energy, Elsevier, vol. 71(C), pages 525-533.
    8. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    9. Sayagh, Shahinaz & Ventura, Anne & Hoang, Tung & François, Denis & Jullien, Agnès, 2010. "Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 348-358.
    10. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    11. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    12. Nguyen, Thu Lan Thi & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand," Energy Policy, Elsevier, vol. 35(9), pages 4585-4596, September.
    13. Mohammed H. Alzard & Munjed A. Maraqa & Rezaul Chowdhury & Qasim Khan & Francisco D. B. Albuquerque & Timur Ibrahim Mauga & Khaled Nazmi Aljunadi, 2019. "Estimation of Greenhouse Gas Emissions Produced by Road Projects in Abu Dhabi, United Arab Emirates," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    14. Matthew J. Nahlik & Andrew T. Kaehr & Mikhail V. Chester & Arpad Horvath & Michael N. Taptich, 2016. "Goods Movement Life Cycle Assessment for Greenhouse Gas Reduction Goals," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 317-328, April.
    15. Scarpellini, S. & Valero, A. & Llera, E. & Aranda, A., 2013. "Multicriteria analysis for the assessment of energy innovations in the transport sector," Energy, Elsevier, vol. 57(C), pages 160-168.
    16. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    17. Engerer, Hella & Horn, Manfred, 2010. "Natural gas vehicles: An option for Europe," Energy Policy, Elsevier, vol. 38(2), pages 1017-1029, February.
    18. Tu, Qingshi & Eckelman, Matthew & Zimmerman, Julie Beth, 2018. "Harmonized algal biofuel life cycle assessment studies enable direct process train comparison," Applied Energy, Elsevier, vol. 224(C), pages 494-509.
    19. Adam J. Liska & Haishun S. Yang & Virgil R. Bremer & Terry J. Klopfenstein & Daniel T. Walters & Galen E. Erickson & Kenneth G. Cassman, 2009. "Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn‐Ethanol," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 58-74, February.
    20. Tokunaga, Kanae & Konan, Denise Eby, 2014. "Home grown or imported? Biofuels life cycle GHG emissions in electricity generation and transportation," Applied Energy, Elsevier, vol. 125(C), pages 123-131.
    21. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neill Raath & Darren J. Hughes, 2025. "The Environmental Impact of Collecting and Processing Abandoned Shopping Trolleys in the UK," Sustainability, MDPI, vol. 17(6), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    2. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    3. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    4. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    6. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    7. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
    8. Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
    9. Bennion, Edward P. & Ginosar, Daniel M. & Moses, John & Agblevor, Foster & Quinn, Jason C., 2015. "Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways," Applied Energy, Elsevier, vol. 154(C), pages 1062-1071.
    10. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Munjed A. Maraqa & Francisco D. B. Albuquerque & Mohammed H. Alzard & Rezaul Chowdhury & Lina A. Kamareddine & Jamal El Zarif, 2021. "GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    12. Loan T. Le, 2016. "Biofuel Production in Vietnam: Cost-Effectiveness, Energy and GHG Balances," EEPSEA Research Report rr20160315, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    13. Santos, João & Flintsch, Gerardo & Ferreira, Adelino, 2017. "Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 15-31.
    14. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    15. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    16. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    17. Konstantina Peloriadi & Petros Iliadis & Panagiotis Boutikos & Konstantinos Atsonios & Panagiotis Grammelis & Aristeidis Nikolopoulos, 2022. "Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study," Energies, MDPI, vol. 15(11), pages 1-20, May.
    18. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    19. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
    20. Suria Tarigan & Iput Pradiko & Nuzul H. Darlan & Yudha Kristanto, 2025. "Carbon Footprint Comparison of Rapeseed and Palm Oil: Impact of Land Use and Fertilizers," Sustainability, MDPI, vol. 17(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02715-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.