IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v104y2015ipap224-238.html
   My bibliography  Save this article

Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling

Author

Listed:
  • Giani, Martina Irene
  • Dotelli, Giovanni
  • Brandini, Nicolò
  • Zampori, Luca

Abstract

In this work the environmental sustainability of asphalt pavement is analyzed, from material production and maintenance strategy point of view. The work consists of an analysis of the life cycle of 1km of road pavement and includes all stages of the life cycle: from extraction of virgin materials to end of life. Three types of pavements are compared, among which one produced with virgin materials and traditional technologies in plant, which is used as a reference, and two in which the use of Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) technology are combined. Also the implementation of the practice of Cold In-Place Recycling (CIR) at the end of life is considered from an environmental point of view: after the first 15 years of life the comparison is made between traditional recycling in plant and CIR. The impacts are evaluated using different methods. Decrease in environmental impacts are found for the options that combine the use of RAP and WMA reaching up to a percentage of reduction of 12% for CO2eq, 15% for energy consumptions, 15% for water used during the lifecycle, and 10–15% for the three macro-categories of damage evaluated in the ReCiPe endpoint method. Additional reductions could be achieved by applying also CIR technology especially for greenhouse gas emissions (−9%).

Suggested Citation

  • Giani, Martina Irene & Dotelli, Giovanni & Brandini, Nicolò & Zampori, Luca, 2015. "Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 224-238.
  • Handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:224-238
    DOI: 10.1016/j.resconrec.2015.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915300665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santero, Nicholas J. & Masanet, Eric & Horvath, Arpad, 2011. "Life-cycle assessment of pavements Part II: Filling the research gaps," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 810-818.
    2. Anastasiou, E.K. & Liapis, A. & Papayianni, I., 2015. "Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 1-8.
    3. Chiu, Chui-Te & Hsu, Tseng-Hsing & Yang, Wan-Fa, 2008. "Life cycle assessment on using recycled materials for rehabilitating asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 545-556.
    4. Vidal, Rosario & Moliner, Enrique & Martínez, Germán & Rubio, M. Carmen, 2013. "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 101-114.
    5. Jullien, Agnès & Monéron, Pierre & Quaranta, Gaetana & Gaillard, David, 2006. "Air emissions from pavement layers composed of varying rates of reclaimed asphalt," Resources, Conservation & Recycling, Elsevier, vol. 47(4), pages 356-374.
    6. Sayagh, Shahinaz & Ventura, Anne & Hoang, Tung & François, Denis & Jullien, Agnès, 2010. "Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 348-358.
    7. Thenoux, Guillermo & González, Álvaro & Dowling, Rafael, 2007. "Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 325-339.
    8. Santero, Nicholas J. & Masanet, Eric & Horvath, Arpad, 2011. "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 801-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    2. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    3. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    4. Michael R. Gruber & Bernhard Hofko, 2023. "Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    5. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    6. Maria Chiara Zanetti & Angela Farina, 2022. "Life Cycle Risk Assessment Applied to Gaseous Emissions from Crumb Rubber Asphalt Pavement Construction," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    7. Jingjing Wang & Chuan Sha & Sivmey Ly & Hao Wang & Yu Sun & Meng Guo, 2023. "Life Cycle Carbon Emissions and an Uncertainty Analysis of Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurangzeb, Qazi & Al-Qadi, Imad L. & Ozer, Hasan & Yang, Rebekah, 2014. "Hybrid life cycle assessment for asphalt mixtures with high RAP content," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 77-86.
    2. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    3. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    4. Farina, Angela & Zanetti, Maria Chiara & Santagata, Ezio & Blengini, Gian Andrea, 2017. "Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 204-212.
    5. Santos, João & Flintsch, Gerardo & Ferreira, Adelino, 2017. "Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 15-31.
    6. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    7. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    8. Vidal, Rosario & Moliner, Enrique & Martínez, Germán & Rubio, M. Carmen, 2013. "Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 101-114.
    9. Yunpeng Zhao & Dimitrios Goulias & Magdalena Dobiszewska & Paweł Modrzyński, 2022. "Life-Cycle Sustainability Assessment of Using Rock Dust as a Partial Replacement of Fine Aggregate and Cement in Concrete Pavements," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    10. Christina Plati & Maria Tsakoumaki, 2023. "Life Cycle Assessment (LCA) of Alternative Pavement Rehabilitation Solutions: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    11. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    12. Silva, Hugo M.R.D. & Oliveira, Joel R.M. & Jesus, Carlos M.G., 2012. "Are totally recycled hot mix asphalts a sustainable alternative for road paving?," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 38-48.
    13. Anne de Bortoli & Maxime Agez, 2023. "Environmentally-Extended Input-Output analyses efficiently sketch large-scale environmental transition plans -- illustration by Canada's road industry," Papers 2301.08302, arXiv.org.
    14. Saade, Marcella Ruschi Mendes & Silva, Maristela Gomes da & Gomes, Vanessa, 2015. "Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 40-47.
    15. Su, Kai & Hachiya, Yoshitaka & Maekawa, Ryota, 2009. "Study on recycled asphalt concrete for use in surface course in airport pavement," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 37-44.
    16. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    18. Capony, Adrien & Muresan, Bogdan & Dauvergne, Michel & Auriol, Jean-Claude & Ferber, Valéry & Jullien, Agnès, 2013. "Monitoring and environmental modeling of earthwork impacts: A road construction case study," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 124-133.
    19. Davor Kvočka & Jakob Šušteršič & Alenka Mauko Pranjić & Ana Mladenović, 2022. "Mass Concrete with EAF Steel Slag Aggregate: Workability, Strength, Temperature Rise, and Environmental Performance," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    20. Anda Ligia Belc & Adrian Ciutina & Raluca Buzatu & Florin Belc & Ciprian Costescu, 2021. "Environmental Impact Assessment of Different Warm Mix Asphalts," Sustainability, MDPI, vol. 13(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:224-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.