IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i5d10.1007_s10668-022-02215-8.html
   My bibliography  Save this article

Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria

Author

Listed:
  • Kelechi E. Anyaoha

    (UNU-FLORES
    Imo State Polytechnic)

  • Lulu Zhang

    (Technische Universität Dresden
    UNU-FLORES)

Abstract

Oil palm dominates global oil production, trade, and consumption. Nigeria is one of the leading palm oil producers and consumers. A significant challenge of the palm oil industry is to reduce the environmental impacts (e.g. pollution and carbon footprint) and integrate a circular economy in operation. This study aims to comparatively quantify the environmental impacts of technologies used by different mills. We applied a life cycle assessment in the case of Nigeria. The study covers the reception and processing of fresh fruit bunch (FFB) to end-product palm oil. The inputs include generated empty fruit bunch (EFB), mesocarp fibre, palm kernel shell, palm oil mill effluent, diesel, water and all outputs to the environment for a functional unit of 1-tonne FFB. The results showed that large-scale mills perform worse (468 kg CO2-eq per t FFB) than the semi-mechanised and smallholder mills in effects on climate change but better in the other impact categories, including human toxicity, ecotoxicity, and fine particulate matter formation. In large-scale mills, the climate change impacts decrease by 75% when the raw palm oil mill effluent (POME) is used in composting EFB. Similarly, climate change impacts reduce by 44% when biogas from POME substitutes diesel in the semi-mechanised and smallholder mills. We conclude that regulatory measures are needed to ensure improved management practices in the production processes. Particular attention should be paid to the generation and reuse of biomass and POME. This study provides a handy reference to assist the sustainable energy transition in Nigeria’s and other parts of sub-Saharan Africa’s oil palm industry to mitigate climate change and form a cleaner bioeconomy.

Suggested Citation

  • Kelechi E. Anyaoha & Lulu Zhang, 2023. "Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4575-4595, May.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02215-8
    DOI: 10.1007/s10668-022-02215-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02215-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02215-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elijah I. Ohimain & Sylvester C. Izah, 2015. "Energy Self-Sufficiency of Semi-Mechanized Oil Palm Processing: A Case Study of Bayelsa Palm Mill, Elebele, Nigeria," Energy Economics Letters, Asian Economic and Social Society, vol. 2(3), pages 35-45, September.
    2. Aziz, Nur Izzah Hamna A. & Hanafiah, Marlia M., 2020. "Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent," Renewable Energy, Elsevier, vol. 145(C), pages 847-857.
    3. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    4. Abu Norhasmillah & Chiew Puah & Nor Ibrahim & Azhari Baharuddin & Yuen Choo, 2013. "Life cycle inventory of the commercial production of compost from oil palm biomass: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1663-1670, December.
    5. Ohimain, Elijah I. & Izah, Sylvester C., 2014. "Energy self-sufficiency of smallholder oil palm processing in Nigeria," Renewable Energy, Elsevier, vol. 63(C), pages 426-431.
    6. Tatsuya Yoshizaki & Yoshihito Shirai & Mohd Hassan & Azhari Baharuddin & Nik Abdullah & Alawi Sulaiman & Zainuri Busu, 2012. "Economic analysis of biogas and compost projects in a palm oil mill with clean development mechanism in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 1065-1079, December.
    7. Elijah I. Ohimain & Sylvester C. Izah, 2015. "Energy Self-Sufficiency of Semi-Mechanized Oil Palm Processing: A Case Study of Bayelsa Palm Mill, Elebele, Nigeria," Energy Economics Letters, Asian Economic and Social Society, vol. 2(3), pages 35-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvester Chibueze Izah, 2016. "Possible Challenges of Potential Drivers of Oil Palm Processing Sector in Nigeria," Journal of Biotechnology Research, Academic Research Publishing Group, vol. 2(10), pages 73-79, 10-2016.
    2. Chin, May Ji & Poh, Phaik Eong & Tey, Beng Ti & Chan, Eng Seng & Chin, Kit Ling, 2013. "Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 717-726.
    3. Pablo Emilio Escamilla-García & Ana Lilia Coria-Páez & Francisco Pérez-Soto & Francisco Gutiérrez-Galicia & Carolina Caire & Blanca L. Martínez-Vargas, 2023. "Financial and Technical Evaluation of Energy Production by Biological and Thermal Treatments of MSW in Mexico City," Energies, MDPI, vol. 16(9), pages 1-14, April.
    4. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    5. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    6. Masachika Suzuki & Bernardo Okazaki Kehdy & Sulabh Jain, 2010. "Identifying Barriers for the Implementation and the Operation of Biogas Power Generation Projects in Southeast Asia: An Analysis of Clean Development Mechanism Projects in Thailand," Working Papers EMS_2010_20, Research Institute, International University of Japan.
    7. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    8. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    9. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    10. P.X.H. Bong & M.A. Malek & N.H. Mardi & Marlia M. Hanafiah, 2020. "Cradle-to-Gate Water-Related Impacts on Production of Traditional Food Products in Malaysia," Sustainability, MDPI, vol. 12(13), pages 1-19, June.
    11. Assunta Maria Palese & Alessandro Persiani & Carmine D’Adamo & Maria Pergola & Vittoria Pastore & Rocco Sileo & Giuseppe Ippolito & Maria Assunta Lombardi & Giuseppe Celano, 2020. "Composting as Manure Disposal Strategy in Small/Medium-Size Livestock Farms: Some Demonstrations with Operative Indications," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    12. Singh, R.P. & Embrandiri, A. & Ibrahim, M.H. & Esa, N., 2011. "Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 423-434.
    13. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    14. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    16. Ohimain, Elijah I. & Izah, Sylvester C., 2014. "Energy self-sufficiency of smallholder oil palm processing in Nigeria," Renewable Energy, Elsevier, vol. 63(C), pages 426-431.
    17. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    18. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    19. S. M. Shafie & Z. Othman & N. Hami & S. Omar & A. H. Nu'man & N. N.A.N. Yusoff & A. Shaf, 2020. "Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 498-502.
    20. Gernot Pehnelt & Christoph Vietze, 2013. "Recalculating GHG emissions saving of palm oil biodiesel," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 429-479, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02215-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.