IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp242-253.html
   My bibliography  Save this article

A review of biogas production from palm oil mill effluents using different configurations of bioreactors

Author

Listed:
  • Ohimain, Elijah Ige
  • Izah, Sylvester Chibueze

Abstract

Palm oil mill effluent (POME) is generated from the sterilization, condensation and hydrocycloning of palm oil in mills. If the effluent is discharged into the aquatic and terrestrial ecosystem without treatment, it could lead to high biological oxygen demand (BOD), chemical oxygen demand (COD) and acidic pH of the receiving waters. Biogas consisting mostly of methane, carbon dioxide, and to a lesser hydrogen has been produced through anaerobic treatment of this toxic effluent. The process of biogas production involves microbial synthesis involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. Biogas is formed during anaerobic degradation of POME by indigenous microbial communities. This review updates the current state of art of biogas production through anaerobic digestion of POME using different configurations of reactors such as fluidized bed reactor, anaerobic filtration, up-flow anaerobic sludge blanket (UASB) reactor, anaerobic contact digestion, up-flow anaerobic sludge fixed-film (UASFF) reactor, modified anaerobic baffled bioreactor (MABB), anaerobic baffled bioreactor (ABR), continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, Ultrasonicated membrane anaerobic system (UMAS), Ultrasonic-assisted Membrane Anaerobic System (UAMAS), membrane anaerobic system (MAS)and upflow anaerobic sludge blanket reactor (UASBR). The factors that influences biogas yield during treatment include pH, temperature (environmental factors), organic loading rate (OLR), hydraulic retention time (HRT), mixing rate, pressure, equilibrium, nutrient and microbial activities (Internal factors). Based on this study, UAMAS is the best configuration for methane production from POME during anaerobic treatment. Biogas from POME could contribute to energy sources of oil palm producing nations, while preventing the attendant environmental impacts associated with its disposal.

Suggested Citation

  • Ohimain, Elijah Ige & Izah, Sylvester Chibueze, 2017. "A review of biogas production from palm oil mill effluents using different configurations of bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 242-253.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:242-253
    DOI: 10.1016/j.rser.2016.11.221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    2. Ugoji, Esther O, 1997. "Anaerobic digestion of palm oil mill effluent and its utilization as fertilizer for environmental protection," Renewable Energy, Elsevier, vol. 10(2), pages 291-294.
    3. Foo, K.Y. & Hameed, B.H., 2010. "Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1445-1452, June.
    4. Akinbami, J. -F. K. & Ilori, M. O. & Oyebisi, T. O. & Akinwumi, I. O. & Adeoti, O., 2001. "Biogas energy use in Nigeria: current status, future prospects and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 97-112, March.
    5. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumathi Sethupathi & Ming Zhang & Anushka Upamali Rajapaksha & Sang Ryong Lee & Norhusna Mohamad Nor & Abdul Rahman Mohamed & Mohammad Al-Wabel & Sang Soo Lee & Yong Sik Ok, 2017. "Biochars as Potential Adsorbers of CH 4 , CO 2 and H 2 S," Sustainability, MDPI, vol. 9(1), pages 1-10, January.
    2. Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
    3. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    4. Ng, Denny K.S. & Wong, Sarah L.X. & Andiappan, Viknesh & Ng, Lik Yin, 2023. "Mathematical optimisation for sustainable bio-methane (Bio-CH4) production from palm oil mill effluent (POME)," Energy, Elsevier, vol. 265(C).
    5. Fasil Ayelegn Tassew & Wenche Hennie Bergland & Carlos Dinamarca & Roald Kommedal & Rune Bakke, 2019. "Granular Sludge Bed Processes in Anaerobic Digestion of Particle-Rich Substrates," Energies, MDPI, vol. 12(15), pages 1-20, July.
    6. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    7. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Cheng, Yoke Wang & Chong, Chi Cheng & Lee, Soon Poh & Lim, Jun Wei & Wu, Ta Yeong & Cheng, Chin Kui, 2020. "Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity," Renewable Energy, Elsevier, vol. 148(C), pages 349-362.
    10. Cui, Peiqi & Ge, Jiye & Chen, Yingyun & Zhao, Yilin & Wang, Shaojie & Su, Haijia, 2022. "The Fe3O4 nanoparticles-modified mycelium pellet-based anaerobic granular sludge enhanced anaerobic digestion of food waste with high salinity and organic load," Renewable Energy, Elsevier, vol. 185(C), pages 376-385.
    11. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ohimain, Elijah I. & Izah, Sylvester C., 2014. "Energy self-sufficiency of smallholder oil palm processing in Nigeria," Renewable Energy, Elsevier, vol. 63(C), pages 426-431.
    2. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    3. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    4. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    5. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    6. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    7. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Zarifi, F. & Mahlia, T.M.I., 2012. "Energy and fuel consumption forecast by retrofitting absorption cooling in Malaysia from 2012 to 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6128-6141.
    8. Foo, K.Y. & Hameed, B.H., 2009. "Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2495-2504, December.
    9. Mohammadtaghi Vakili & Mohd. Rafatullah & Mahamad Ibrahim & Babak Salamatinia & Zahra Gholami & Haider Zwain, 2015. "A review on composting of oil palm biomass," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 691-709, August.
    10. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah, 2017. "The Potential Of Palm Oil Mill Effluent (POME) As A Renewable Energy Source," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 1(2), pages 9-11, October.
    11. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    12. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    13. Norhisam Misron & Suhairi Rizuan & Aravind Vaithilingam & Nashiren Farzilah Mailah & Hanamoto Tsuyoshi & Yamada Hiroaki & Shirai Yoshihito, 2011. "Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine," Energies, MDPI, vol. 4(11), pages 1-13, November.
    14. Chen, Yu & Hu, Wei & Sweeney, Sandra, 2013. "Resource availability for household biogas production in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 655-659.
    15. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    16. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    17. Peter Omojaro, 2011. "Energy analysis for onsite and offsite suburban wastewater," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 519-533, June.
    18. Jekayinfa, S.O. & Bamgboye, A.I., 2008. "Energy use analysis of selected palm-kernel oil mills in south western Nigeria," Energy, Elsevier, vol. 33(1), pages 81-90.
    19. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    20. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:242-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.