IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i3d10.1007_s10668-022-02127-7.html
   My bibliography  Save this article

An integrated approach land suitability for agroecological zoning based on fuzzy inference system and GIS

Author

Listed:
  • Jafar Nabati

    (Ferdowsi University of Mashhad)

  • Ahmad Nezami

    (Ferdowsi University of Mashhad)

  • Ehsan Neamatollahi

    (Ferdowsi University of Mashhad)

  • Morteza Akbari

    (Ferdowsi University of Mashhad)

Abstract

Land suitability assessment is integral to land planning and development. One of the crucial ways to know the different capabilities of lands is to use agroecological zoning. The result of this type of land zoning is quantitative and qualitative increases in crop yields due to climate, soil, and topographic adaptations. This study aimed to create agroecological zoning maps for irrigated and rain-fed chickpea cultivation in semiarid regions in the Khorasan provinces, Iran. Data was prepared in a geographic information system (GIS) environment and using a membership function defined in a fuzzy inference system. Then, by weighted linear combination method, the standardized layers were combined with their weight in GIS environment to reach the final maps. The results illustrated that the precipitation factor had the highest weight (0.9) for rain-fed chickpea farming. For irrigated chickpea cultivation, slope and soil capability had the highest weight (0.9). The agroecological zoning maps indicated that 154,625 ha (0.7%) and 178,412 ha (2.9%) of the study area were the most suitable lands, respectively, for rain-fed and irrigated chickpea cultivation. 9.5% (2,265,128 ha) and 9% (2,168,314 ha), 31% (7,398,457 ha) and 19.1% (4,565,217 ha), and 58.8% (14,010,097 ha) and 71% (16,916,364 ha) of the study area were moderately suitable, marginally suitable, and unsuitable for rain-fed and irrigated chickpea cultivation, respectively. The results also illustrated that climatic zoning and topographic zoning have a critical role in determining the suitable areas for chickpea production under rain-fed and irrigated conditions.

Suggested Citation

  • Jafar Nabati & Ahmad Nezami & Ehsan Neamatollahi & Morteza Akbari, 2023. "An integrated approach land suitability for agroecological zoning based on fuzzy inference system and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2316-2338, March.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02127-7
    DOI: 10.1007/s10668-022-02127-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02127-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02127-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    3. Worqlul, A. W. & Dile, Y. T. & Jeong, J. & Adimassu, Zenebe & Lefore, Nicole & Gerik, T. & Srinivasan, R. & Clarke, N., 2019. "Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana," Papers published in Journals (Open Access), International Water Management Institute, pages 157:110-157.
    4. E. Neamatollahi & J. Vafabakhshi & M.R. Jahansuz & F. Sharifzadeh, 2017. "Agricultural Optimal Cropping Pattern Determination Based on Fuzzy System," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 9(4), pages 479-491, December.
    5. Shouqiang Yin & Jing Li & Jiaxin Liang & Kejing Jia & Zhen Yang & Yuan Wang, 2020. "Optimization of the Weighted Linear Combination Method for Agricultural Land Suitability Evaluation Considering Current Land Use and Regional Differences," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    6. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Mokarram, Marzieh & Mirsoleimani, Abbas, 2018. "Using Fuzzy-AHP and order weight average (OWA) methods for land suitability determination for citrus cultivation in ArcGIS (Case study: Fars province, Iran)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 506-518.
    8. Veronique Theriault & Melinda Smale & Hamza Haider, 2018. "Economic incentives to use fertilizer on maize under differing agro-ecological conditions in Burkina Faso," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1263-1277, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    2. Subham Roy & Nimai Singha & Arghadeep Bose & Debanjan Basak & Indrajit Roy Chowdhury, 2023. "Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7101-7133, July.
    3. Akpoti, Komlavi & Dossou-Yovo, Elliott R. & Zwart, Sander J. & Kiepe, Paul, 2021. "The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso," Agricultural Water Management, Elsevier, vol. 247(C).
    4. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    5. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    7. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    8. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    9. Edgar Vladimir Gutiérrez Castorena & Gustavo Andrés Ramírez Gómez & Carlos Alberto Ortíz Solorio, 2023. "The Agricultural Potential of a Region with Semi-Dry, Warm and Temperate Subhumid Climate Diversity through Agroecological Zoning," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    10. Mohammed Abdul-Rahman & Wale Alade & Shahnawaz Anwer, 2023. "A Composite Resilience Index (CRI) for Developing Resilience and Sustainability in University Towns," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    11. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    12. Adina-Eliza Croitoru & Titus Cristian Man & Sorin Daniel Vâtcă & Bela Kobulniczky & Vlad Stoian, 2020. "Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj ," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    13. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    14. Fernandez, Karen V., 2020. "PROVE it! A practical primer to positioning theoretically," Australasian marketing journal, Elsevier, vol. 28(1), pages 57-64.
    15. Movahedi, Reza & Jawanmardi, Sina & Azadi, Hossein & Goli, Imaneh & Viira, Ants-Hannes & Witlox, Frank, 2021. "Why do farmers abandon agricultural lands? The case of Western Iran," Land Use Policy, Elsevier, vol. 108(C).
    16. Timuçin Everest, 2021. "Suitable site selection for pistachio (Pistacia vera) by using GIS and multi-criteria decision analyses (a case study in Turkey)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7686-7705, May.
    17. Irina Pilvere & Aleksejs Nipers & Agnese Krievina & Ilze Upite & Daniels Kotovs, 2022. "LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers," Agriculture, MDPI, vol. 12(5), pages 1-26, May.
    18. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    19. Timuçin Everest & Hakan Koparan & Ali Sungur & Hasan Özcan, 2022. "An important tool against combat climate change: Land suitability assessment for canola (a case study: Çanakkale, NW Turkey)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13137-13172, November.
    20. Shouqiang Yin & Jing Li & Jiaxin Liang & Kejing Jia & Zhen Yang & Yuan Wang, 2020. "Optimization of the Weighted Linear Combination Method for Agricultural Land Suitability Evaluation Considering Current Land Use and Regional Differences," Sustainability, MDPI, vol. 12(23), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02127-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.