IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i11d10.1007_s10668-022-02627-6.html
   My bibliography  Save this article

Sustainable evaluation of agroecosystem in the Yangtze River Economic Belt, China based on the Emergy Theory

Author

Listed:
  • Xiaocui Dong

    (Nanjing Agricultural University)

  • Hongguang Liu

    (Nanjing Agricultural University)

Abstract

The economic development level of the Yangtze River Economic Belt is relatively high, and the modern agricultural production has brought serious pressure to the agricultural ecological environment. At present, there is no research on the sustainable status of agroecosystem in the Yangtze River Economic Belt, based on the emergy theory, this paper analyzes and evaluates the input–output structure and sustainable status of the Yangtze River Economic Belt by calculating the input–output factors and relevant emergy indexes from 2010 to 2018. The results show that the total input and output emergy of the Yangtze River Economic Belt shows an upward trend from 2010 to 2018. The input of non-renewable industrial auxiliary emergy is too high which has been more than 80%, and the structure of agriculture, forestry, animal husbandry, and fishery industry is unreasonable, which makes the net emergy yield rate of the system very low, its value was only 0.23 in 2018, far less than 1, and the agroecosystem is in an unsustainable state. Except for Shanghai, most provinces and cities of the Yangtze River Economic Belt are in an unsustainable state, and the status of the agricultural ecological environment is not optimistic. From 2010 to 2018, the overall ecological environment of the agricultural ecosystem in the Yangtze River Economic Belt is not optimistic. Among them, the most affected agricultural ecosystem’s sustainable development index is the cash-crop area, total population, and agricultural fixed asset investment. Relevant departments and agricultural practitioners need to change the resource input structure of the agricultural ecosystem, reduce the dependence on industrial auxiliary energy, improve resource utilization efficiency, adjust the industrial structure of agricultural output and increase the production of high-emergy products, to realize sustainable development of the agricultural ecosystem.

Suggested Citation

  • Xiaocui Dong & Hongguang Liu, 2023. "Sustainable evaluation of agroecosystem in the Yangtze River Economic Belt, China based on the Emergy Theory," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13471-13494, November.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02627-6
    DOI: 10.1007/s10668-022-02627-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02627-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02627-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Mejía, Alejandra M. & Ma, Xin (Cissy), 2017. "The Emergy Perspective of Sustainable Trends in Puerto Rico From 1960 to 2013," Ecological Economics, Elsevier, vol. 133(C), pages 11-22.
    2. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    3. Ferraro, D.O. & Benzi, P., 2015. "A long-term sustainability assessment of an Argentinian agricultural system based on emergy synthesis," Ecological Modelling, Elsevier, vol. 306(C), pages 121-129.
    4. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    5. Sun, Yufeng & Wang, Yapeng & Yang, Bin & Zheng, Zipeng & Wang, Chun & Chen, Bo & Li, Suiliang & Ying, Jilai & Liu, Xinping & Chen, Liang & Mu, Wenlong, 2021. "Emergy evaluation of straw collection, transportation and storage system for power generation in China," Energy, Elsevier, vol. 231(C).
    6. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    7. Xingguo Gu & Qixian Lai & Moucheng Liu & Ziqun He & Qingyang Zhang & Qingwen Min, 2019. "Sustainability Assessment of a Qingyuan Mushroom Culture System Based on Emergy," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Wu & Yaliu Yang & Conghu Liu & Guowei Xu & Yuxia Guo & Fan Liu & Yuan Wang, 2021. "Sustainability of Regional Agroecological Economic System Based on Emergy Theory: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    2. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    3. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    4. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    5. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    6. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    7. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    8. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    9. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    10. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    11. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    12. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    14. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    15. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    16. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    17. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    18. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    19. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    20. Quintero-Angel, Mauricio & Coles, Ashley & Duque-Nivia, Andrés A., 2021. "A historical perspective of landscape appropriation and land use transitions in the Colombian South Pacific," Ecological Economics, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:11:d:10.1007_s10668-022-02627-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.